Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:22
  • full-text downloads in 30 days:10
article: 1 from 1  
Back back to result list
Medicinski podmladak
2018, vol. 69, iss. 3, pp. 56-62
article language: Serbian
document type: Review Paper
doi:10.5937/mp69-18134

Creative Commons License 4.0
The role of exercise on cognitive processes and neuroplasticity
University of Belgrade, Faculty of Medicine

e-mail: allerasic@gmail.com

Abstract

During the process of evolution, human brain has developed an extraordinary characteristic of neuroplasticity, which is the capacity to change its structure and function under the influence of the external environment and experience. Numerous studies and evidence suggest beneficial effects of exercise on the brain and mental health. It is considered that exercise leads to the improvement of cognitive functions, with a particular emphasis on learning and memory. It was also found that exercise reduces the risk of developing dementia, it manifests an antidepressant effect and deflects cognitive decay in aging. This positive outcome is reflected in neurophysiological measures that showed increased prefrontal and temporal gray matter volume, decreased latency and increased amplitude of event related potentials in physically active individuals compared to sedentary controls. Even though the idea of the beneficial effects on mental health has been present for centuries, only recent studies have identified possible mechanisms that produce a synergistic positive effect. Potential neural mechanism that has been singled out is increased synthesis and release of neurotransmitters and neurotrophins, which then stimulate neurogenesis, angiogenesis and neuroplasticity. Exercise represents a potential adjuvant therapy in the treatment of neurodegenerative diseases, which not only reduces the cost of treatment, but also contributes to improving the quality of life and improving the mental health of an individual. It is therefore necessary to direct research into understanding the mechanisms by which exercise affects the brain.

Keywords

References

Adlard, P. A. (2005) Voluntary Exercise Decreases Amyloid Load in a Transgenic Model of Alzheimer's Disease. Journal of Neuroscience, 25(17): 4217-4221
Babyak, M., Blumenthal, J.A., Herman, S., Khatri, P., Doraiswamy, M., Moore, K., Edward, C.W., Baldewicz, T.T., Ranga, K.K. (2000) Exercise Treatment for Major Depression: Maintenance of Therapeutic Benefit at 10 Months. Psychosomatic Medicine, 62(5): 633-638
Barnes, C.A. (1994) Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends in Neurosciences, 17(1): 13-18
Barnes, D.E., Yaffe, K., Satariano, W.A., Tager, I.B. (2003) A Longitudinal Study of Cardiorespiratory Fitness and Cognitive Function in Healthy Older Adults. Journal of the American Geriatrics Society, 51(4): 459-465
Bavelier, D., Neville, H.J. (2002) Cross-modal plasticity: where and how?. Nature Reviews Neuroscience, 3(6): 443-452
Caspersen, C.J., Powell, K.E., Christenson, G.M. (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports, 100(2), 126-131
Chaouloff, F. (1989) Physical exercise and brain monoamines: a review. Acta Physiologica Scandinavica, 137(1): 1-13
Chen, K.S., Masliah, E., Mallory, M., Gage, F.H. (1995) Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human nerve growth factor infusion. Neuroscience, 68(1): 19-27
Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., Kramer, A. F. (2003) Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2): M176-M180
Cotman, C.W., Berchtold, N.C., Christie, L. (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9): 464-472
Davis, C.L., Lambourne, K. (2009) Exercise and Cognition in Children. in: McMorris, Terry; Tomporowski, Phillip D.; Audiffren, Michel [ed.] Exercise and Cognitive Function, Chichester, UK: Wiley, str. 249-267
Dietrich, M. O., Andrews, Z. B., Horvath, T. L. (2008) Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation. Journal of Neuroscience, 28(42): 10766-10771
Dik, M.G., Deeg, D.J.H., Visser, M., Jonker, C. (2003) Early Life Physical Activity and Cognition at Old Age. Journal of Clinical and Experimental Neuropsychology, 25(5): 643-653
Dishman, R.K., Berthoud, H., Booth, F.W., Cotman, C.W., Edgerton, V. R., Fleshner, M.R., Gandevia, S.C., Gomez-Pinilla, F., Greenwood, B.N., Hillman, C.H., Kramer, A.F., Levin, B.E., Moran, T. (2006) Neurobiology of Exercise*. Obesity, 14(3): 345-356
Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., Palmer, T.D. (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18(10): 2803-2812
Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F., Christie, B. (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague-dawley rats in vivo. Neuroscience, 124(1): 71-79
Fernandes, B.S., Berk, M., Turck, C.W., Steiner, J., Gonçalves, C. (2014) Decreased peripheral brain-derived neurotrophic factor levels are a biomarker of disease activity in major psychiatric disorders: a comparative meta-analysis. Molecular Psychiatry, 19(7): 750-751
Ferris, L.T., Williams, J.S., Shen, C. (2007) The Effect of Acute Exercise on Serum Brain-Derived Neurotrophic Factor Levels and Cognitive Function. Medicine & Science in Sports & Exercise, 39(4): 728-734
Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., d`Esposito M. (2008) Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35): 13122-13126
Golomb, J., Kluger, A., de Leon, M. J., Ferris, S. H., Mittelman, M. P., Cohen, J., George, A. E. (1996) Hippocampal formation size predicts declining memory performance in normal aging. Neurology, 47(3): 810-813
Gomez-Pinilla, F., Hillman, C. (2013) The influence of exercise on cognitive abilities. Compr Physiol, Jan; 3(1); 403-28
Gorelick, P.B., Furie, K.L., Iadecola, C., Smith, E.E., Waddy, S.P., Lloyd-Jones, D.M., Bae, H., Bauman, M.A., Dichgans, M., Duncan, P.W., Girgus, M., Howard, V.J., Lazar, R.M., Seshadri (2017) Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association. Stroke, 48(10):
Greenwood, B.N., Foley, T.E., Day, H.E. W., Campisi, J., Hammack, S.H., Campeau, S., Maier, S.F., Fleshner, M. (2003) Freewheel Running Prevents Learned Helplessness/Behavioral Depression: Role of Dorsal Raphe Serotonergic Neurons. Journal of Neuroscience, 23(7): 2889-2898
Griffin, É.W., Mullally, S., Foley, C., Warmington, S.A., o`Mara Shane, M., Kelly, Á.M. (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5): 934-941
Hamilton, G.F., Rhodes, J.S. (2015) Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain. Elsevier BV, str. 381-406
Hillman, C.H., Erickson, K.I., Kramer, A.F. (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1): 58
Hillman, C.H., Belopolsky, A.V., Snook, E.M., Kramer, A.F., McAuley, E. (2004) Physical Activity and Executive Control: Implications for Increased Cognitive Health during Older Adulthood. Research Quarterly for Exercise and Sport, 75(2): 176-185
Hopkins, M.E., Davis, F.C., VanTieghem, M.R., Whalen, P.J., Bucci, D.J. (2012) Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, 215: 59-68
Hötting, K., Röder, B. (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9): 2243-2257
Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., Mori, K., Ikeda, T., Itohara, S., Kageyama, R. (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature Neuroscience, 11(10): 1153-1161
Kee, N., Teixeira, C.M., Wang, A.H., Frankland, P.W. (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature Neuroscience, 10(3): 355-362
Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., Alenina, N. (2013) Serotonin Is Required for Exercise-Induced Adult Hippocampal Neurogenesis. Journal of Neuroscience, 33(19): 8270-8275
Ladrón, de G.D., Millón, C., Rosell-Valle, C., Pérez-Fernández, M., Missiroli, M., Serrano, A., Pavón, F.J., Rodríguez, de F.F., Martínez-Losa, M., Álvarez-Dolado, M., Santín, L. (2017) Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Disease Models & Mechanisms, 10(3): 323-336
Lista, I., Sorrentino, G. (2010) Biological Mechanisms of Physical Activity in Preventing Cognitive Decline. Cellular and Molecular Neurobiology, 30(4): 493-503
Liu, Y., Chen, H., Yu, L., Kuo, Y., Wu, F., Chuang, J., Liao, P., Jen, C.J. (2008) Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiology of Learning and Memory, 90(1): 81-89
Mårtensson, J., Eriksson, J., Bodammer, N.C., Lindgren, M., Johansson, M., Nyberg, L., Lövdén, M. (2012) Growth of language-related brain areas after foreign language learning. NeuroImage, 63(1): 240-244
Meeusen, R., Piacentini, M., van den Eynde, S., Magnus, L., de Meirleir, K. (2001) Exercise Performance is not Influenced by a 5-HT Reuptake Inhibitor. International Journal of Sports Medicine, 22(05): 329-336
Meeusen, R., Smolders, I., Sarre, S., de Meirleir, K., Keizer, H., Serneels, M., Ebinger, G., Michotte, Y. (1997) Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiologica Scandinavica, 159(4): 335-341
Meeusen, R. (2014) Exercise, Nutrition and the Brain. Sports Medicine, 44(S1): 47-56
Ming, G., Song, H. (2011) Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron, 70(4): 687-702
Neeper, S.A., Gómez-Pinilla, F., Choi, J., Cotman, C.W. (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726(1-2): 49-56
Ocallaghan, R., Ohle, R., Kelly, A. (2007) The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behavioural Brain Research, 176(2): 362-366
Phillips, C., Baktir, M.A., Srivatsan, M., Salehi, A. (2014) Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience, 8:170
Redila, V.A., Christie, B.R. (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137(4): 1299-1307
Sibley, B., Etnier, J. (2003) The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15, 243-256
Stranahan, A.M., Khalil, D., Gould, E. (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17(11): 1017-1022
Trejo, J.L., Carro, E., Torres-Alemán, I. (2001) Circulating Insulin-Like Growth Factor I Mediates Exercise-Induced Increases in the Number of New Neurons in the Adult Hippocampus. Journal of Neuroscience, 21(5): 1628-1634
van Praag, H., Christie, B. R., Sejnowski, T. J., Gage, F. H. (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences, 96(23): 13427-13431
van Praag, H. (2005) Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice. Journal of Neuroscience, 25(38): 8680-8685
van Praag, H. (2008) Neurogenesis and Exercise: Past and Future Directions. NeuroMolecular Medicine, 10(2): 128-140
van Praag, H. (2009) Exercise and the brain: something to chew on. Trends in Neurosciences, 32(5): 283-290
Vaynman, S., Gomez-Pinilla, F. (2005) License to Run: Exercise Impacts Functional Plasticity in the Intact and Injured Central Nervous System by Using Neurotrophins. Neurorehabilitation and Neural Repair, 19(4): 283-295
Verghese, J., Lipton, R.B., Katz, M.J., Hall, C.B., Derby, C.A., Kuslansky, G., Ambrose, A.F., Sliwinski, M., Buschke, H. (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med, 348(25): 2508-16
Weinberger, N.M. (2004) Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4): 279-290
Winter, B., Breitenstein, C., Mooren, F.C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A., Knecht, S. (2007) High impact running improves learning. Neurobiology of Learning and Memory, 87(4): 597-609
Yaffe, K., Barnes, D., Nevitt, M., Lui, L., Covinsky, K. (2001) A Prospective Study of Physical Activity and Cognitive Decline in Elderly Women. Archives of Internal Medicine, 161(14): 1703
Yamada, M., Kasagi, F., Sasaki, H., Masunari, N., Mimori, Y., Suzuki, G. (2003) Association Between Dementia and Midlife Risk Factors: the Radiation Effects Research Foundation Adult Health Study. Journal of the American Geriatrics Society, 51(3): 410-414
Zhao, C. (2006) Distinct Morphological Stages of Dentate Granule Neuron Maturation in the Adult Mouse Hippocampus. Journal of Neuroscience, 26(1): 3-11