Article metrics

  • citations in SCindeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[=>]
  • visits in previous 30 days:1
  • full-text downloads in 30 days:0
article: 1 from 3  
Back back to result list
Management - časopis za teoriju i praksu menadžmenta
2011, vol. 16, iss. 59, pp. 55-63
article language: Serbian, English
document type: unclassified
published on: 19/10/2011
Hidden Markov Models for analyzing medical time series in order to detect nosocomial pneumonia
aUniversity Jena (FSU), Department of Information Systems, Jena, Germany
bUniversity Hospital, Jena, Germany



Pneumonia - as an inflammatory illness of the lung - is a dangerous and often fatal disease. A special subclass, the ventilator associated pneumonia (VAP), is affecting up to one fifth of the patients at Intensive Care Units (ICU). Based on a two years dataset, collected at a large ICU, we investigate a new method for time series processing in order to develop an early warning system for developing pneumonia. The system focuses on the pre-onset phase of the disease to extrapolate the future's course. We utilized the functionality of Hidden Markov Models and the stacking paradigm to categorize and forecast given time series of a patient. Finally we demonstrate the benefits of our approach with a set of real patient data.


American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med, 171(4): 388-416
Baum, L.E., Petrie, T., Soules, G., Weiss, N. (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41, 1, str. 164-171
Buncher, C.R., Succop, P.A., Dietrich, K.N. (1991) Structural equation modeling in environmental risk assessment. Environmental health perspectives, 90: 209-13
Bystroff, C., Krogh, A. (2008) Hidden Markov Models for prediction of protein features. Methods in molecular biology, 413: 173-98
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R. (2000) CRISP-DM 1.0: Step-by-step data mining guide. CRISP-DM consortium,, Current June, 2007
Forney, G.D. (1973) The viterbi algorithm. Proceedings of the IEEE, 61(3): 268-278
Gascuel, O., Moret, B.M.E., ur. (2001) Algorithms in Bioinformatics. Lecture Notes in Computer Science, vol 2149, International workshop, WABI 2001 (I), Aarhus, Denmark, August 28-31, 2001, proceedings, Springer
Heyland, D.K., Cook, D.J., Griffith, L., Keenan, S.P., Brun-Buisson, C. (1999) The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med, 159(4 Pt 1): 1249-56
Manning, C.D., Schutze, H. (2005) Foundations of statistical natural language processing. Cambridge: MIT Press
Oroszi, F. (2008) Einsatz von Data Mining Verfahren auf medizinischen Daten - Anwendungsfall Pneumonie-Früherkennung. Jena: Friedrich-Schiller-Universität Jena, PhD thesis
Pugin, J., Auckenthaler, R., Mili, N., Janssens, J.P., Lew, P.D., Suter, P.M. (1991) Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic 'blind' bronchoalveolar lavage fluid. Am Rev Respir Dis, 143(5 Pt 1): 1121-9
Rabiner, L.R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, str. 257-286
Rabiner, L.R., Juang, B.H. (1986) An introduction to Hidden Markov models. IEEE Acousfics: Speech & Signal Processing, Magazine, 3, 1-16
Rea-Neto, A., Youssef, N.C.M., Tuche, F., Brunkhorst, F., Ranieri, M.V., Reinhart, K., Sakr, Y. (2008) Diagnosis of ventilator-associated pneumonia: A systematic review of the literature. Critical care, 12(2): R56
Tejerina, E., Frutos-Vivar, F., Restrepo, M.I., Anzueto, A., Abroug, F., Palizas, F., González, M., Empaire, G.D., Apezteguía, C., Esteban, A. (2006) Incidence, risk factors, and outcome of ventilator-associated pneumonia. Journal of critical care, 21(1): 56-65
Ting, K.M., Witten, I.H. (1997) Stacked generalization: When does it work. in: International joint conference on artificial intelligence, proc., Morgan Kaufmann, pp 866-871
Wolpert, D.H. (1992) Stacked generalization. Neural Networks, 5(2): 241-259