Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:34
  • preuzimanja u poslednjih 30 dana:21
članak: 1 od 1  
Back povratak na rezultate
Ratarstvo i povrtarstvo
2018, vol. 55, br. 1, str. 49-57
jezik rada: engleski
vrsta rada: pregledni članak
doi:10.5937/ratpov55-12211

Creative Commons License 4.0
Benzoksazinoidi - zaštitni sekundarni metaboliti žitarica - uloga i primena
aNaučni institut za ratarstvo i povrtarstvo, Novi Sad
bUniversity of Agriculture, Faculty of Animal Husbandry and Veterinary Sciences, Department of Animal Health, Peshawar, Pakistan

e-adresa: sanja.mikic@ifvcns.ns.ac.rs

Projekat

Unapređenje proizvodnje kukuruza i sirka u uslovima stresa (MPNTR - 31073)

Sažetak

Benzoksazinoidi su sekundarni metaboliti biljaka koji obezbeđuju zaštitu od brojnih štetočina i patogena. Utvrđeni su kod monokotila, poput trava, i nekoliko porodica dikotila. Među usevima, benzoksazinoidi su najbolje opisani kod pšenice, kukuruza i raži. Ovi prirodni pesticidi imaju inhibitorno dejstvo na korove, insekte, fitopatogene gljive, bakterije i nematode. Pored toga, benzoksazinoidi pokazuju sposobnost da potisnu stvaranje mikotoksina, ublaže negativno dejstvo nedostatka mikroelemenata i toksičnosti i privuku korisne bakterije u rizosferi useva. U ovom radu, sažete su prednosti i mogućnosti primene ovih alelojedinjenja u zaštiti žitarica, ukazujući na njihov značaj u proizvodnji sa integralnim merama zaštite u kojoj je smanjena upotreba pesticida, ili u organskoj proizvodnji u kojoj se pesticidi ne koriste. S tim u vezi, razmatraju se moguća ograničenja i rizici primene benzoksazinoida. Konačno, ukazuje se na dostupnu germplazmu sa velikim sadržajem benzoksazinoida koja može poslužiti kao izvor otpornosti u oplemenjivačkim programima žitarica.

Ključne reči

alelojedinjenja; benzoksazinoidi; DIMBOA; oplemenjivanje žitarica; sekundarni metaboliti; zaštita od štetočina; zaštitne mere

Reference

Abel, C.A., Berhow, M.A., Wilson, R.L., Binder, B.F., Hibbard, B.E. (2000) Evaluation of Conventional Resistance to European Corn Borer (Lepidoptera: Crambidae) and Western Corn Rootworm (Coleoptera: Chrysomelidae) in Experimental Maize Lines Developed from a Backcross Breeding Program. Journal of Economic Entomology, 93(6): 1814-1821
Adhikari, K.B., Tanwir, F., Gregersen, P.L., Steffensen, S.K., Jensen, B.M., Poulsen, L.K., Nielsen, C.H., Høyer, S., Borre, M., Fomsgaard, I.S. (2015) Benzoxazinoids: Cereal phytochemicals with putative therapeutic and health-protecting properties. Molecular Nutrition & Food Research, 59(7): 1324-1338
Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y., Martin, J., Smart, L., Glauser, G., Erb, M., Flors, V., Frey, M., Ton, J. (2011) Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize. Plant Physiology, 157(1): 317-327
Alouw, J. C., Miller, N. J. (2014) Effects of benzoxazinoids on specialist and generalist Diabrotica species. Journal of Applied Entomology, 139(6): 424-431
Bacon, C.W., Hinton, D.M., Glenn, A.E., Macías, F.A., Marin, D. (2007) Interactions of Bacillus mojavensis and Fusarium verticillioides with a Benzoxazolinone (BOA) and its Transformation Product, APO. Journal of Chemical Ecology, 33(10): 1885-1897
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57(1): 233-266
Basse, C. W. (2005) Dissecting Defense-Related and Developmental Transcriptional Responses of Maize during Ustilago maydis Infection and Subsequent Tumor Formation. Plant Physiology, 138(3): 1774-1784
Belz, R.G., Hurle, K. (2005) Differential exudation of two benzoxazinoids - One of the determining factors for seedling allelopathy of Triticeae species. Journal of Agricultural and Food Chemistry, 250-261; 53
Betsiashvili, M., Ahern, K. R., Jander, G. (2015) Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Journal of Experimental Botany, 66(2): 571-578
Brooks, A.M., Danehower, D.A., Murphy, J. P., Reberg-Horton, S. C., Burton, J.D. (2011) Estimation of heritability of benzoxazinoid production in rye (Secale cereale) using gas chromatographic analysis. Plant Breeding, 131(1): 104-109
Buchmann, C.A., Nersesyan, A., Kopp, B., Schauberger, D., Darroudi, F., Grummt, T., Krupitza, G., Kundi, M., Schulte-Hermann, R., Knasmueller, S. (2007) Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), two naturally occurring benzoxazinones contained in sprouts of Gramineae are potent aneugens in human-derived liver cells (HepG2). Cancer Letters, 246(1-2): 290-299
Cambier, V., Hance, T., de Hoffmann, E. (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53(2): 223-229
Cambier, V., Hance, T., de Hoffmann, E. (2001) Effects of 1,4-benzoxazin- 3-one derivatives from maize on survival and fecundity of Metopolophium dirhodum (Walker) on artificial diet. Journal of Chemical Ecology, 27(2): 359-370
Cardinal, A.J., Lee, M., Guthrie, W.D., Bing, J., Austin, D.F., Veldboom, L.R., Senior, M.L. (2006) Mapping of factors for resistance to leaf-blade feeding by European corn borer (Ostrinia nubilalis) in maize. Maydica, 93-102; 51
Che, X., Zheng, C., Akiyama, S., Tomoda, A. (2011) 2-Aminophenoxazine-3-one and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one cause cellular apoptosis by reducing higher intracellular pH in cancer cells. Proceedings of the Japan Academy, Series B, 87(4): 199-213
Corcuera, L. J., Woodward, M. D., Helgeson, J. P., Kelman, A., Upper, C. D. (1978) 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, an Inhibitor from Zea mays with Differential Activity against Soft Rotting Erwinia Species. Plant Physiology, 61(5): 791-795
Dakora, F.D., Phillips, D.A. (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245(1): 35-47
Davis, C.S., Ni, X., Quisenberry, S.S., Foster, J.E. (2000) Identification and Quantification of Hydroxamic Acids in Maize Seedling Root Tissue and Impact on Western Corn Rootworm (Coleoptera: Chrysomelidae) Larval Development. Journal of Economic Entomology, 93(3): 989-992
de Lange, E.S., Balmer, D., Mauch-Mani, B., Turlings, T.C. J. (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytologist, 204(2): 329-341
Dihm, K., Vendelbo, L.M., Sundén, H., Ross, A., Savolainen, O. (2017) Quantification of benzoxazinoids and their metabolites in Nordic breads. Food Chemistry, 235: 7-13
Ding, X., Yang, M., Huang, H., Chuan, Y., He, X., Li, C., Zhu, Y., Zhu, S. (2015) Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. Frontiers in Plant Science, 6:
Elek, H., Smart, L., Martin, J., Ahmad, S., Gordon-Weeks, R., Anda, A., Welham, S., Werner, P., Pickett, J. (2013) Hydroxamic acids in Aegilops species and effects on Rhopalosiphum padi behaviour and fecundity. Bulletin of Insectology, 66(2): 213-220
Erb, M., Flors, V., Karlen, D., de Lange, E., Planchamp, C., d`Alessandro Marco,, Turlings, T.C. J., Ton, J. (2009) Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant Journal, 59(2): 292-302
Etzerodt, T., Maeda, K., Nakajima, Y., Laursen, B., Fomsgaard, I.S., Kimura, M. (2015) 2,4-Dihydroxy-7-methoxy-2 H -1,4-benzoxazin-3(4 H )-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. International Journal of Food Microbiology, 214: 123-128
Friebe, A., Vilich, V., Hennig, L., Kluge, M., Sicker, D. (1998) Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum. Applied and Environmental Microbiology, 64(7): 2386-2391
Frost, C. J., Mescher, M. C., Carlson, J. E., de Moraes, C. M. (2008) Plant Defense Priming against Herbivores: Getting Ready for a Different Battle. Plant Physiology, 146(3): 818-824
Fuentes-Contreras, E., Niemeyer, H.M. (1998) DIMBOA glucoside, a wheat chemical defense, affects host acceptance and suitability of Sitobion avenae to the cereal aphid parasitoid Aphidius rhopalosiphi. Journal of Chemical Ecology, 24(2): 371-381
Glauser, G., Marti, G., Villard, N., Doyen, G.A., Wolfender, J., Turlings, T.C.J., Erb, M. (2011) Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant Journal, 68(5): 901-911
Glenn, A. E., Gold, S. E., Bacon, C. W. (2002) Fdb1 and Fdb2 , Fusarium verticillioides Loci Necessary for Detoxification of Preformed Antimicrobials from Corn. Molecular Plant-Microbe Interactions, 15(2): 91-101
Gordon-Weeks, R., Smart, L., Ahmad, S., Zhang, Y., Elek, H., Jing, H., Martin, J., Pickett, J. (2010) The role of the benzoxazinone pathway in aphid resistance in wheat. HGCA Project Report, 1-66; 473
Grün, S., Frey, M., Gierl, A. (2005) Evolution of the indole alkaloid biosynthesis in the genus Hordeum: Distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry, 66(11): 1264-1272
Hanhineva, K., Rogachev, I., Aura, A., Aharoni, A., Poutanen, K., Mykkänen, H. (2011) Qualitative Characterization of Benzoxazinoid Derivatives in Whole Grain Rye and Wheat by LC-MS Metabolite Profiling. Journal of Agricultural and Food Chemistry, 59(3): 921-927
Huang, Z., Haig, T., Wu, H., An, M., Pratley, J. (2003) Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat. Journal of Chemical Ecology, 29(10): 2263-2279
Idinger, J., Coja, T., Blümel, S. (2006) Effects of the benzoxazoid DIMBOA, selected degradation products, and structure-related pesticides on soil organisms. Ecotoxicology and Environmental Safety, 65(1): 1-13
Jampatong, C., McMullen, M.D., Barry, B. D., Darrah, L.L., Byrne, P.F., Kross, H. (2002) Quantitative Trait Loci for First- and Second-Generation European Corn Borer Resistance Derived from the Maize Inbred Mo47. Crop Science, 42(2): 584
Jensen, B.M., Adhikari, K.B., Schnoor, H.J., Juel-Berg, N., Fomsgaard, I.S., Poulsen, L.K. (2017) Quantitative analysis of absorption, metabolism, and excretion of benzoxazinoids in humans after the consumption of high- and low-benzoxazinoid diets with similar contents of cereal dietary fibres: a crossover study. European Journal of Nutrition, 56(1): 387-397
Kato, S., Shirato, K., Imaizumi, K., Toyota, H., Mizuguchi, J., Odawara, M., Che, X., Akiyama, S., Abe, A., Tomoda, A. (2006) Anticancer effects of phenoxazine derivatives combined with tumor necrosis factor-related apoptosis-inducing ligand on pancreatic cancer cell lines, KLM-1 and MIA-PaCa-2. Oncology Reports
Kia, S.H., Schulz, M., Ayah, E., Schouten, A., Müllenborn, C., Paetz, C., Schneider, B., Hofmann, D., Disko, U., Tabaglio, V., Marocco, A. (2014) Abutilon theophrasti's Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans. Journal of Chemical Ecology, 40(11-12): 1286-1298
Klenke, J. R. (1987) Disease Resistance in Five Cycles of 'BS9' Corn Synthetic Selected for Resistance to Two Generations of European Corn Borer. Phytopathology, 77(5): 735
Krakowsky, M. D., Lee, M., Woodman-Clikeman, W. L., Long, M. J., Sharopova, N. (2004) QTL Mapping of Resistance to Stalk Tunneling by the European Corn Borer in RILs of Maize Population B73 × De811. Crop Science, 44(1): 274
Kupferschmied, P., Maurhofer, M., Keel, C. (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4:
Leszczynski, B., Matok, H., Dixon, A. F. G. (1992) Resistance of cereals to aphids: The interaction between hydroxamic acids and UDP-glucose transferases in the aphidSitobion avenue (Homoptera: Aphididae). Journal of Chemical Ecology, 18(7): 1189-1200
Li, X., He, K., Wang, Z., Bai, S. (2010) Quantitative Trait Loci for Asian Corn Borer Resistance in Maize Population Mc37 × Zi330. Agricultural Sciences in China, 9(1): 77-84
Maag, D., Dalvit, C., Thevenet, D., Köhler, A., Wouters, F.C., Vassão, D.G., Gershenzon, J., Wolfender, J., Turlings, T.C.J., Erb, M., Glauser, G. (2014) 3-β-d-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry, 102: 97-105
Maag, D., Erb, M., Bernal, J.S., Wolfender, J., Turlings, T.C. J., Glauser, G. (2015) Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors. PLoS One, 10(8): e0135722
Macías, F.A., Chinchilla, N., Arroyo, E., Molinillo, J.M. G., Marín, D., Varela, R.M. (2010) Combined Strategy for Phytotoxicity Enhancement of Benzoxazinones. Journal of Agricultural and Food Chemistry, 58(3): 2047-2053
Marcacci, S., Raveton, M., Ravanel, P., Schwitzguébel, J. (2005) The Possible Role of Hydroxylation in the Detoxification of Atrazine in Mature Vetiver (Chrysopogon zizanioides Nash) Grown in Hydroponics. Zeitschrift für Naturforschung C, 60(5-6): 427-434
Maresh, J., Zhang, J., Lynn, D.G. (2006) The Innate Immunity of Maize and the Dynamic Chemical Strategies Regulating Two-Component Signal Transduction in Agrobacterium tumefaciens. ACS Chemical Biology, 1(3): 165-175
Meihls, L. N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M. M., Lipka, A. E., Gershenzon, J., Buckler, E. S., Erb, M., Kollner, T. G., Jander, G. (2013) Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity. Plant Cell, 25(6): 2341-2355
Meyer, S.L.F., Rice, C.P., Zasada, I.A. (2009) DIBOA: Fate in soil and effects on root-knot nematode egg numbers. Soil Biology and Biochemistry, 41(7): 1555-1560
Miller, J., Fielder, D.A., Dowd, P.F., Norton, R.A., Collins, F. (1996) Isolation of 4-acetyl-benzoxazolin-2-one (4-ABOA) and diferuloylputrescine from an extract of gibberella ear rot-resistant corn that blocks mycotoxin biosynthesis, and the insect toxicity of 4-ABOA and related compounds. Biochemical Systematics and Ecology, 24(7-8): 647-658
Mukanganyama, S., Figueroa, C., Hasler, J., Niemeyer, H. (2003) Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: aphididae). Journal of Insect Physiology, 49(3): 223-229
neal andrew, Ton, J. (2013) Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Plant Signaling & Behavior, 8(1): e22655
Neal, A.L., Ahmad, S., Gordon-Weeks, R., Ton, J. (2012) Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere. PLoS One, 7(4): e35498
Nicol, D., Copaja, S. V., Wratten, S. D., Niemeyer, H. M. (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Annals of Applied Biology, 121(1): 11-18
Nicol, D., Wratten, S.D., Eaton, N., Copaja, S.V. (1993) Effects of DIMBOA levels in wheat on the susceptibility of the grain aphid (Sitobion avenue) to deltamethrin. Annals of Applied Biology, 122(3): 427-433
Niemeyer, H.M. (1988) Hydroxamic acid content of Triticum species. Euphytica, 37(3): 289-293
Niemeyer, H.M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry, 27(11): 3349-3358
Niemeyer, H.M. (2009) Hydroxamic Acids Derived from 2-Hydroxy-2 H -1,4-Benzoxazin-3(4 H )-one: Key Defense Chemicals of Cereals. Journal of Agricultural and Food Chemistry, 57(5): 1677-1696
Nomura, T., Ishihara, A., Imaishi, H., Ohkawa, H., Endo, T.R., Iwamura, H. (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta, 217(5): 776-782
Nomura, T., Ishihara, A., Iwamura, H., Endo, T.R. (2007) Molecular characterization of benzoxazinone-deficient mutation in diploid wheat. Phytochemistry, 68(7): 1008-1016
Park, W.J., Prinsen, E., van Onckelen, H., Schafer, A., Kang, B.G., Hertel, R. (2001) Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Planta, 213(1): 92-100
Pedersen, H.A., Laursen, B., Mortensen, A., Fomsgaard, I.S. (2011) Bread from common cereal cultivars contains an important array of neglected bioactive benzoxazinoids. Food Chemistry, 127(4): 1814-1820
Perez, F.J. (1990) Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. Fatua. Phytochemistry, 29(3): 773-776
Petho, M. (1993) Occurrence of cyclic hydroxamic acids in the tissues of barnyard grass (Echinochloa crus-galli), and their possible role in allelopathy). Acta Agronomica Hungarica, 197-202; 42
Pihlava, J., Hellström, J., Kurtelius, T., Mattila, P. (2018) Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye ( Secale cereale ) and some rye products. Journal of Cereal Science, 79: 183-192
Poschenrieder, C., Tolrà, R.P., Barceló, J. (2005) A role for cyclic hydroxamates in aluminium resistance in maize?. Journal of Inorganic Biochemistry, 99(9): 1830-1836
Poupaert, J., Carato, P., Colacino, E., Yous, S. (2005) 2(3H)-benzoxazolone and bioisosters as 'privileged scaffold' in the design of pharmacological probes. Current medicinal chemistry, 12(7): 877-85
Prinz, S., Schauberger, D., Bauer, I.M., Knasmueller, S., Kopp, B. (2010) Aneugenic 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) in sprouts of Triticum aestivum cultivars - A ‘safety health food'?. Food Chemistry, 121(4): 973-979
Robert, C.A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G.R., Villard, N., Gaillard, M.D. P., Köllner, T.G., Giron, D., Body, M., Babst, B.A., Ferrieri, R.A., Turlings, T.C. J. (2011) A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecology Letters, 15(1): 55-64
Rosenfeld, M.J., Forsberg, S.R. (2009) U.S. Patent No. 7,521,468. Washington, DC: U.S. Patent and Trademark Office
Rostás, M. (2007) The effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one on two species of Spodoptera and the growth of Setosphaeria turcica in vitro. Journal of Pest Science, 80(1): 35-41
Santiago, R., Cao, A., Butrón, A., López-Malvar, A., Rodríguez, V.M., Sandoya, G.V., Malvar, R.A. (2017) Defensive changes in maize leaves induced by feeding of Mediterranean corn borer larvae. BMC Plant Biology, 17(1): 44
Sasai, H., Ishida, M., Murakami, K., Tadokoro, N., Ishihara, A., Nishida, R., Mori, N. (2009) Species-Specific Glucosylation of DIMBOA in Larvae of the Rice Armyworm. Bioscience, Biotechnology, and Biochemistry, 73(6): 1333-1338
Saunders, M., Kohn, L. M. (2008) Host-Synthesized Secondary Compounds Influence the In Vitro Interactions between Fungal Endophytes of Maize. Applied and Environmental Microbiology, 74(1): 136-142
Søltoft, M., Jørgensen, L.N., Svensmark, B., Fomsgaard, I.S. (2008) Benzoxazinoid concentrations show correlation with Fusarium Head Blight resistance in Danish wheat varieties. Biochemical Systematics and Ecology, 36(4): 245-259
Song, Y.Y., Cao, M., Xie, L.J., Liang, X.T., Zeng, R.S., Su, Y.J., Huang, J.H., Wang, R.L., Luo, S.M. (2011) Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza, 21(8): 721-731
Steffensen, S.K., Adhikari, K.B., Laursen, B.B., Jensen, C., Gregersen, P.L., Bhattarai, B., Maraís, L.M., Schnorr, H., Jensen, B.M., Poulsen, L.K., Nielsen, C.H., Borre, M., Borre, M., Høyer, S. (2017) Bioactive small molecules in commercially available cereal food: Benzoxazinoids. Journal of Food Composition and Analysis, 64: 213-222
Szczepaniec, A., Widney, S.E., Bernal, J.S., Eubanks, M.D. (2012) Higher expression of induced defenses in teosintes ( Zea spp.) is correlated with greater resistance to fall armyworm, Spodoptera frugiperda. Entomologia Experimentalis et Applicata, 146(2): 242-251
Tabaglio, V., Gavazzi, C., Schulz, M., Marocco, A. (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agronomy for Sustainable Development, 28(3): 397-401
Takahashi, C.G., Kalns, L.L., Bernal, J.S. (2012) Plant defense against fall armyworm in micro-sympatric maize ( Zea mays ssp. mays ) and Balsas teosinte ( Zea mays ssp. Entomologia Experimentalis et Applicata, 145(3): 191-200
Tzin, V., Hojo, Y., Strickler, S.R., Bartsch, L.J., Archer, C.M., Ahern, K.R., Zhou, S., Christensen, S.A., Galis, I., Mueller, L.A., Jander, G. (2017) Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. Journal of Experimental Botany, 68(16): 4709-4723
Wang, J.W., Xu, T., Zhang, L.W., Zhong, Z.M., Luo, S.M. (2007) Effects of methyl jasmonate on hydroxamic acid and phenolic acid content in maize and its allelopathic activity to Echinochloa crusgalli (L.). Allelopathy Journal, 161-169; 19
Wenger, K., Bigler, L., Suter, M. J.-F., Schönenberger, R., Gupta, S. K., Schulin, R. (2005) Effect of Corn Root Exudates on the Degradation of Atrazine and Its Chlorinated Metabolites in Soils. Journal of Environment Quality, 34(6): 2187
Wu, H., Haig, T., Pratley, J., Lemerle, D., An, M. (2001) Allelochemicals in Wheat ( Triticum aestivum L.):  Cultivar Difference in the Exudation of Phenolic Acids. Journal of Agricultural and Food Chemistry, 49(8): 3742-3745
Wu, W., Chen, T., Lu, R., Chen, S., Chang, C. (2012) Benzoxazinoids from Scoparia dulcis (sweet broomweed) with antiproliferative activity against the DU-145 human prostate cancer cell line. Phytochemistry, 83: 110-115
Yang, M., Zhang, Y., Qi, L., Mei, X., Liao, J., Ding, X., Deng, W., Fan, L., He, X., Vivanco, J.M., Li, C., Zhu, Y., Zhu, S. (2014) Plant-Plant-Microbe Mechanisms Involved in Soil-Borne Disease Suppression on a Maize and Pepper Intercropping System. PLoS One, 9(12): e115052
Yin, J., Chen, J., Cao, Y., Li, K., Hu, Y., Sun, J. (2005) Wheat resistance induced by exogenous chemicals to the wheat aphid, Sitobion avenae (F.) and the oriental armyworm, Mythimna separata (Walker). Acta Entomologica Sinica, 48(5): 718-724
Zasada, I. A., Meyer, S. L. F., Halbrendt, J. M., Rice, C. (2005) Activity of Hydroxamic Acids from Secale cereale Against the Plant-Parasitic Nematodes Meloidogyne incognita and Xiphinema americanum. Phytopathology, 95(10): 1116-1121
Zheng, C.L., Che, X.F., Akiyama, S.I., Miyazawa, K., Tomoda, A. (2010) 2-Aminophenoxazine-3-one induces cellular apoptosis by causing rapid intracellular acidification and generating reactive oxygen species in human lung adenocarcinoma cells. International Journal of Oncology, 36(3), 641-650
Zheng, L., McMullen, M.D., Bauer, E., Schön, C., Gierl, A., Frey, M. (2015) Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. Journal of Experimental Botany, 66(13): 3917-3930
Zheng, Y., Zhao, Y., Liu, X., Yao, J., Dong, F. (2008) Chemical inducement of 2, 4-dihydroxy-7-methoxy -1, 4-benzoxazin-3-one (DIMBOA) in wheat seedlings. Allelopathy Journal, 21(2): 263-271