Metrika članka

  • citati u SCindeksu: [2]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0
članak: 2 od 10  
Back povratak na rezultate
Scientific Technical Review
2013, vol. 63, br. 3, str. 22-32
jezik rada: engleski
vrsta rada: neklasifikovan
Novi rezultati upravljanja necelobrojnog reda datim mehatroničkim sistemom
Univerzitet u Beogradu, Mašinski fakultet

Projekat

Održivost i unapređenje mašinskih sistema u energetici i transportu primenom forenzičkog inženjerstva, eko i robust dizajna (MPNTR - 35006)

Sažetak

Ovaj rad predstavlja jedan novi algoritam PID upravljanja necelobrojnog reda zasnovani na genetskim algoritmima (GA) u zadatku pozicioniranja robotskog sistema sa tri stepena slobode pogonjen jednosmernim motorima. Urađena su optimalna podešavanja parametara FOPID kontrolera kao i IOPID kontrolera, primenom GA pristupa za date FOPID/IOPID kontrolere na uporedni način. Efektivnost predloženog optimalnog FOPID upravljanja je demonstrirano na datom robotskom sistemu kao jednim ilustrativnim primerom. Takođe, u preostalom delu rada prezentovano je projektovanje naprednog algoritma FOPID upravljanja podešavanog primenom GA i primena u upravljanju proizvodnjom tehničkih gasova, tj. kriogenog procesa separacije vazduha. Zatim je izvedeni model linearizovan i raspregnut i gde su zatim primenjeni IOPID i FOPID kontroleri. Na sličan način, skup optimalnih parametara datih kontrolera su dobijeni primenom GA optimizacione procedure minimizujući predloženi kriterijum optimalnosti. Konačno, koristeći rezultate simulacije u vremenskom domenu pokazano je da FOPID kontroler poboljšava odgovor sistema u prelaznom režimu i obezbeđuje više robusnosti u poređenju sa klasičnim IOPID kontrolerom.

Ključne reči

Reference

Abel, N.H. (1826) Auosung einer mechanischen Aufgabe. J. fur reine und angew. Math., 1: 153-157
Abel, N.H. (2012) Solution de quelques problèmes à l'aide d'intégrales définies. str. 11-27
Aldair, A.A., Wang, W.J. (2010) Design of fractional order controller based on evolutionary algorithm for a full vehicle nonlinear active suspension systems. International Journal of Control and Automation, 3: 33-46
Astrom, K.J., Hagglund, T. (1995) PID controllers: Theory, design, and tuning. Research Triangle Park, NC: Instrument Society of America
Astrom, Y.K.J., Hagglund, T. (2000) The future of PID control. u: IFAC workshop on digital control: Past, present and future of PID control, Terrassa, Spain, April, str. 19-30
Barbosa, R., Tenreiro, J.A., Ferreira, I.M. (2004) PID controller tuning using fractional calculus concepts. Fractional Calculus and Applied Analysis, 7(2): 119-134
Barbosa, R.S., Tenreiro-Machado, J.A. (2002) Describing function analysis of systems with impacts and backlash. Nonlinear Dynamics, 29(1-4):235-250
Bingul, Z. (2004) A New PID Tuning Technique Using Differential Evolution for Unstable and Integrating Processes with Time Delay. Lecture Notes in Computer Science, str. 254-260
Biswas, A., Das, S., Abraham, A., Dasgupta, S. (2009) Design of fractional-order PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence, 22(2): 343-350
Bode, H. (1945) Network analysis and feedback amplifier design. Van Nostrand
Bučanović, Lj.J., Lazarević, M.P., Batalov, S.N. (2013) Fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process. Hemijska industrija, (00): 78-78
Butkovskii, A.G., Postnov, S.S., Postnova, E.A. (2013) Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Automation and Remote Control, 74(4): 543-574
Caponetto, R., Fortuna, L., Porto, D. (2002) Parameter tuning of a non integer order PID controller. u: International symposium on mathematical theory of networks and systems (15th), Notre Dame, Indiana
Caputo, M. (1967) Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Royal Astronom. Soc, 13, str. 529-539
Caputo, M. (1969) Elasticita e Dissipazione. Bologna, Italy: Zanichelli
Chambers, L. (2001) The practical handbook of genetic algorithms: Applications. New York: Chapman & Hall CRC
Chen, Y.Q., Moore, K.L., Vinagre, B.M., i dr. (2004) Robust PID controller autotuning with a phase shaper. u: Proceedings of the First IFACWorkshop on Fractional Differentiation and Its Application, Bordeaux, France: ENSEIRB, 162-167
Euler, L. De progressionibus transcendendibus seu quarum termini generales algebraicae dari nequent. Comm. Acad. Sci. Petropolitanae, 5:36.57,1738. Translated into English by S. G. Langton, University of San Diego, www.sandiego.edu/_langton
Goldberg, D.E. (1989) Genetic algorithms in search: Optimization and machine learning. Reading, MA, itd: Addison-Wesley
Grunwald, A.K. (1867) Ueber begrenzte Derivationen und deren Anwendung. Z. angew. Math. und Phys., 12(480): 441
Hadamard, J. (1892) Essai sur l'etude des fonctions donnees par leur developpment de Taylor. J. Math. Pures et Appl. Ser., 4(8): 101-186
Hardy, G.H., Littlewood, J.E. (1928) Some properties of fractional integrals. I. Mathematische Zeitschrift, 27(1): 565-606
Hardy, G.H., Littlewood, J.E. (1932) Some properties of fractional integrals. II. Mathematische Zeitschrift, 34(1): 403-439
Haupt, R.L., Haupt, S.E. (2004) Practical genetic algorithms. Hoboken: J. Wiley & Sons
Hilfer, R. (2000) Applications of fractional calculus in physics. Singapore: World Scientific
Holmgren, H. (1865-1866) Om differentialkalkylen med indecies af hvad natur som helst. u: Kongl. Svenska Vetenskaps-Akad. Handl. Stockholm, Bd 5, br. 11, 83, pages (in Swedish)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006) Preface. u: North-Holland Mathematics Studies, str. vii-x
Lacroix, S.F. (1819) Traite Du Calcul Différentiel et du Calcul Integral. Courcier, Paris, 2. vol. 3, 409-410
Lazarević, M., Batalov, S., Latinovic, T. (2013) Fractional PID controller tuned by genetic algorithms for a three DOFs robot system driven by DC motors. u: Workshop FDA (6th), IFAC joint conference, Grenoble, February, str. 385-390
Lazarević, M. (2011) Stability and stabilization of fractional order time delay systems. Scientific Technical Review, vol. 61, br. 1, str. 31-45
Lazarević, M. (2012) Upravljanje necelobrojnog reda jednim robotskim sistemom pogonjenog jednosmernim motorima. Scientific Technical Review, vol. 62, br. 2, str. 20-29
Lazarević, M.P. (2005) Optimalno upravljanje redundantnim robotima na način sličan čoveku. FME Transactions, vol. 33, br. 2, str. 53-64
Letnikov, A.V. (1868) Theory of differentiation with an arbitrary index (Russian). Moscow Matem. Sbornik, 3(66): 1
Leu, J.F., Tsay, S.Y., Hwang, C. (2002) Design of optimal fractionalorder PID controllers. Journal of the Chinese Institute of Chemical Engineers, 33(2): 193-202
Liouville, J. (1832) Memoire sur quelques questions e géométrie e de mécanique, et sur un niveaux genre de calcul pour resoudre ces questions. J. lEcole Roy. Polytechn, 13, Sect. 21, 1-69
Liouville, J. (1832) Memoire sur le calcul des dierentielles μa indice quelcon-ques. J. lEcole Roy. Polytechn, 13, Sect. 21, 71-162
Liouville, J. (1837) Memoire sur l'integration des equations differentielles a indices fractionnaires. J. l'Ecole Roy. Polytechn, 15(55): 58-84
Liouville, J. (1834) Mémoire sur le théorème des fonctions complémentaires. Journal für die reine und angewandte Mathematik (Crelles Journal), 1834(11): 1-19
Luo, Y., Chen, Y. (2012) Fractional Order Motion Controls. JohnWiley & Sons
Lurie, B.J. (1994) Three-parameter tunable tilt-integral-derivative (TID) controller: US Patent US5371670
Maione, G., Lino, P. (2007) New tuning rules for fractional PIα controllers. Nonlinear Dynamics, 49(1-2): 251-257
Manabe, S. (1961) The non-integer integral and its application to control systems. Japanese Institute of Electrical Engineers Journal, 6(3-4): 83-87
Marchaud, A. (1927) Sur les derivees et sur les differences des fonctions des variables reelles. J. Math. Pures Appl., 6(9): 337-425
Miller, K.S., Ross, B. (1993) An introduction to fractional calculus and fractional differential equations. New York: Wiley
Monje, C.A., i dr. (2010) Fractional-order Systems and Controls. London: Springer - Verlag
Monje, C.A., Calderon, A.J., Vinagre, B.M., Chen, Y., Feliu, V. (2004) On Fractional PI? Controllers: Some Tuning Rules for Robustness to Plant Uncertainties. Nonlinear Dynamics, 38(1-4): 369-381
Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y. (2008) Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice, 16(7): 798-812
Oldham, K.B., Spanier, J. (1974) The fractional calculus: Theory and applications of differentiation and integration to arbitrary order. New York: Academic Press
Oustaloup, A., Moreau, X., Nouillant, M. (1996) The CRONE suspension. Control Engineering Practice, 4(8): 1101-1108
Oustaloup, A., Sabatier, J., Lanusse, P. (1999) From fractal robustness to CRONE control. Fractional Calculus and Applied Analysis, 2(1): 1-30
Oustaloup, A. (1991) Complex Non Integer Derivation in Robust Control through the CRONE Control. u: Analysis of Controlled Dynamical Systems, str. 326-336
Oustaloup, A., Mathieu, B., Lanusse, P. (1995) The CRONE control of resonant plants: application to a flexible transmission. Euro. J. Control, 1(2): 113-121
Podlubny, I. (1999) Fractional differential equations. New York-San Diego, itd: Academic Press
Podlubny, I. Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers. IEEE Transactions on Automatic Control, 44(1): 208-214
Rabotnov, Y.N. (1969) Creep problems in structural members. u: North-Holland series in applied mathematics and mechanics, 7, Originally published in Russian as: Polzuchest Elementov Konstruktsii, Nauka, Moscow, 1966
Sabatier, J., Agrawal, O.P., Machado, T.J.A. (2007) Advances in fractional calculus. Dordrecht: Springer
Samko, S.G., Kilbas, A.A., Marichev, O.I. (1993) Fractional integrals and derivatives. Amsterdam: Gordon and Breach
Sonin, N.Y. (1869) On differentiation with arbitrary index. Moscow Matem Sbornik, 6(1): 1-38
Tenreiro Machado, J.A. (2010) Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dynamics, 62(1-2): 447-452
Trierweiler, J.O., Engell, S. (2000) A case study for control structure selection: air separation plant. Journal of Process Control, 10(2-3): 237-243
Trierweiler, J.O., Farina, L.A. (2003) RPN tuning strategy for model predictive control. Journal of Process Control, 13(7): 591-598
Valerio, D. (2005) Fractional robust system control. Lisbon: Technical University of Lisboa, PhD thesis
Vinagre, B.M., Podlubny, I., Dorcak, L., i dr. (2000) On fractional PID controllers: a frequency domain approach. u: Proceedings of the IFAC Workshop on Digital Control. Past, Present and Future of PID Control, Terrasa, Spain, 53-58
Vinagre, B.M.C., Monje, A., Calder'on, A.J., i dr. (2004) The fractional integrator as a reference function. u: Proceedings of the First IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France: ENSEIRB, 150-155
Vinson, D.R. (2006) Air separation control technology. Computers & Chemical Engineering, 30(10-12): 1436-1446
Weyl, H. (1917) Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Ierteljshr Naturforsch Gesellsch Zurich, 62, str. 296-302