Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 2 od 2  
Back povratak na rezultate
2014, vol. 18, br. 2, str. 105-181
Transversal functional analysis
(naslov ne postoji na srpskom)
Univerzitet u Beogradu, Matematički fakultet

e-adresaandreja@predrag.us
Ključne reči: Transversal (upper; lower and middle) normed spaces; Transversal seminorms; Form of Hahn-Banach theorem; Form of Principle of Uniform Boundedness; Form of Banach-Steinhaus theorem; Form of Open Mapping theorem; Form of Riesz lemma; Geometrical lemma; Form of
Sažetak
(ne postoji na srpskom)
This paper provides an introduction to the ideas and methods of transversal functional analysis based on the transversal sets theory. A unifying concept that lies at the heart of transversal functional analysis is that of a transversal normed linear space. I have developed the theory far enough to include facts of have called the three new basic principles of linear analysis as: Form of Hahn-Banach theorem, Form of Principle of Uniform Boundedness (= Form of Banach-Steinhaus theorem), and Form of Open Mapping theorem. In the classical functional analysis fundamental fact is Riesz lemma. In transversal functional analysis (on lower transversal normed spaces) its role play so-called Geometrical lemma! This paper presents applications of the Axiom of Infinite Choice.
Reference
Banach, S. (1920) Surlequation fonctionnale f(x+y) = f(x) + f(y). Fund. Math, 1, 123-124
Banach, S. (1929) Sur les fonctionnelles linéaires II. Studia Mathematica, 1(1): 223-239
Banach, S. (1932) Théorie des opérations linéaires. u: Monografie Matematyczne, Varsovie, t. 1
Banach, S. (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3: 133-181
Hahn, H. (1926) Über lineare Gleichungssysteme in linearen Räumen. J. Reine Angew. Math., 214-229; 157
Riesz, F., Nagy, B.Sz. (1955) Functional analysis. New York: Ungar
Riesz, F. (1916) Über lineare Funktionalgleichungen. Acta Mathematica, 41(0): 71-98
Riesz, F. (1910) Untersuchungen �ber Systeme integrierbarer Funktionen. Mathematische Annalen, 69(4): 449-497
Tasković, M.R. (2005) Theory of transversal point, spaces and forks. u: Fundamental Elements and Applications: Monographs of a new mathematical theory, Beograd: VIZ, In Serbian, 1054 pages. English summary: 1001-1022
Tasković, M.R. (2012) The axiom of infinite choice. Mathematica Moravica, vol. 16, br. 1, str. 1-32
Zermelo, E. (1907) Neuer Beweis für die Möglichkeit einer Wohlordnun. Mathematische Annalen, 65(1): 107-128
Zermelo, E. (1904) Beweis dass jede Menge wohlgeordnet werden kann, (Aus einem an Herrn Hilbert gerichteten Briefe). Mathematische Annalen, 59(4): 514-516
Zorn, M. (1944) Idempotency of infinite cardinals. Univ. Calif. Publ. in Math., Seminar Reports (Los Angeles), 2, 9-12
Zorn, M. (1935) A remark on method in transfinite algebra. Bulletin of the American Mathematical Society, 41(10): 667-671
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1402105T
objavljen u SCIndeksu: 25.03.2017.

Povezani članci

Nema povezanih članaka