Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:17
  • preuzimanja u poslednjih 30 dana:11

Sadržaj

članak: 1 od 1  
2021, vol. 76, br. 3, str. 273-278
Optimizacija parametara sinteze nanokompozita na bazi bakterijske nanoceluloze/Fe3O4
aBeogradska politehnika, Beograd
bUniverzitet u Beogradu, Poljoprivredni fakultet, Srbija
cUniverzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča, Srbija
dSrpska akademija nauke i umetnosti (SANU), Institut tehničkih nauka, Beograd, Srbija

e-adresaajanicijevic@politehnika.edu.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Poljoprivredni fakultet) (MPNTR - 451-03-68/2020-14/200116)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Institut tehničkih nauka SANU, Beograd) (MPNTR - 451-03-68/2020-14/200175)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (MPNTR - 451-03-68/2020-14/200017)

Ključne reči: bakterijska nanoceluloza; magnetit; precipitacija; nanokompozit
Sažetak
Napredak u mnogim oblastima tehnike i tehnologije je blisko povezan sa razvojem novih ili unapređenjem postojećih materijala. Imajući u vidu široku primenu bakterijske nanoceluloze (BNC) u raznim oblastima svakodnevnog života, od biomedicine, ekologije do elektronike, kompoziti na bazi BNC su sve rasprostranjeniji i privlače pažnju naučne zajednice. Posebno je značajno detaljno ispitati parametre sinteze koji utiču na promene u kristalnoj strukturi i morfologiji dobijenih kompozita, imajući u vidu da ove promene imaju značajan uticaj na krajnja funkcionalna svojstva. U ovom radu je proučavan kompozitni materijal zasnovan na bakterijskoj nanocelulozi BNC (kao početnoj komponenti) i feromagnetnom Fe3O4. BNC je dobijena aktivnošću bakterija sirćetnog vrenja nakon 7 dana rasta u odgovarajućem medijuma. Istraživanje je usmereno na optimizaciju uslova precipitacije Fe3O4, koji se odnose na promenu intervala stajanja BNC filmova u rastvoru soli gvožđa. Uticaj različitih uslova sinteze je analiziran metodama SEM-EDS, FTIR i XRD.
Reference
*** (2013) Bacterial NanoCellulose: A Sophisticated Multifunctional Material CRC Press. Taylor & Francis Group
Anirudhan, T.S., Rejeena, S.R. (2013) Poly(methacrylic Acid-co-vinyl Sulfonic Acid) - Grafted-magnetite/Nanocellulose Superabsorbent Composite for the Selective Recovery and Separation of Immunoglobulin from Aqueous Solutions. Sep. Purif. Technol, 119: 82-93
Cao, L., Cheng, Z., Yan, M., Chen, Y. (2019) Anisotropic Rubber Nanocomposites Via Magnetic-induced Alignment of Fe3O4/cellulose Nanocrystals Hybrids Obtained by Templated Assembly. Chemical Engineering Journal, 363: 203-212
Eslahi, N., Mahmoodi, A., Mahmoudi, N., Zandi, N., Simchi, A. (2020) Processing and properties of Nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym. Rev, 60, 144-170
Forbes, Z.G., Yellen, B.B., Halverson, D.S., Fridman, G., Barbee, K.A., Friedman, G. (2008) Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow. IEEE Transactions on Bio-medical Engineering, 55(2), 643-649
Fuller, M.E., Andaya, C., McClay, K. (2018) Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. Journal of Microbiological Methods, 144: 145-151
Honglin, L., Yang, Z., Zhiwei, Y., Guangyao, X., Yizao, W. (2017) Constructing Superior Carbonnanofiber-based Composite Microwave Absorbers by Engineering Dispersion and Loading of Fe3O4 Nanoparticles on Three-dimensional Carbon Nanofibers Derived from Bacterial Cellulose. Materials Chemistry and Physics, 201: 130-138
Janićijević, A., Filipović, S., Pavlović, V.B., Sknepnek, A., Kovačevič, D., Đorđević, N., Mirković, M., Živković, P. (2021) Sinteza i struktura bakterijske celuloze primenom bakterija sirćetnog vrenja. u: Savetovanje o biotehnologiji sa međunarodnim učešćem, Čačak, 281-289
Katepetch, C., Rujiravanit, R. (2011) Synthesis of Magnetic Nanoparticle into Bacterial Cellulose Matrix by Ammonia Gas-enhancing in Situ Co-precipitation Method. Carbohydrate Polymers, 86(1), 162-170
Kumar, D.P., Kim, B.S. (2020) Bacterial cellulose production from biodiesel-derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules, 153: 902-911
La, C.S., de Vero, L., Anguluri, K., Brugnoli, M., Mamlouk, D., Gullo, M. (2021) Kombucha Tea as a Reservoir of Cellulose Producing Bacteria: Assessing Diversity among Komagataeibacter Isolates. Applied Sciences, 11(4):1595
Laroussi, C., Hassiba, C., Rahma, M., Mejdi, S., Emmanuel, B.M., Hassen, V.L.M. (2020) Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydrate Polymers, 247
Marins, J.A., Soares, B.G., Barud, H.S., Ribeiro, S.J.L. (2013) Mater. Sci. Eng. C-Mater. Biol. Appl, 30
Mashkour, M., Moradabadi, Z., Khazaeian, A. (2017) Physical and Tensile Properties of Epoxy Laminated Magnetic Bacterial Cellulose Nanocomposite Films. J. Appl. Polym. Sci, 134
Matsuto, T., Jung, C.H., Tanaka, N. (2004) Material and heavy metal balance in a recycling facility for home electrical appliances. Waste Management, 24(5), 425-436
Nata, I.F., Sureshkumar, M., Lee, C.K. (2011) One-pot Preparation of Amine-rich Magnetite/bacterial Cellulose Nanocomposite and Its Application for Arsenate Removal. RSC Advances, 1(4), 625-631
Park, M., Cheng, J., Choi, J., Kim, J., Hyun, J. (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf. B, 102: 238-242
Peng, Y., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z., Tshabalala, M.A. (2013) Influence of Drying Method on the Material Properties of Nanocellulose I: Thermostability and Crystallinity. Cellulose, 20(5): 2379-2392
Rajala, S., Siponkoski, T., Sarlin§, E., Mettänen, M., Vuoriluoto, M., Pammo, A., Juuti, J., Rojas, O.J., Franssila, S., Tuukkanen, S. (2016) Cellulose Nanofibril Film as a Piezoelectric Sensor Material. ACS Appl. Mater. Interfaces, 8(24): 15607-15614
Siró, I., Plackett, D. (2010) Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3): 459-494
Sureshkumar, M., Siswanto, D.Y., Lee, C.K. (2010) Magnetic Antimicrobial Nanocomposite Based Onbacterial Cellulose and Silver Nanoparticles. Journal of Materials Chemistry, 20(33), 6948-6955
Wan, Y.Z., Yang, Z.W., Xiong, G.Y., Guo, R.S., Liu, Z., Luo, H.L. (2015) Anchoring Fe3O4 Nanoparticles on Three-dimensional Carbon Nanofibers Toward Flexible Highperformance Anodes for Lithium-ion Batteries. Journal of Power Sources, 294, 414-419
Yingkamhaeng, N., Intapan, I., Sukyai, P. (2018) Fabrication and Characterisation of Functionalised Superparamagnetic Bacterial Nanocellulose Using Ultrasonic-Assisted in Situ Synthesis. Fibers and Polymers, 19(3):489-497
Yu, Y., Wang, Y., Deng, P., Zhang, T. (2020) Fe3O4 @rgo Hybrids Intercalated Nanocellulose-based Aerogels for Enhanced Ferromagnetic and Mechanical Properties. Journal of Applied Polymer Science, 137
Zeng, M.L., Laromaine, A., Feng, W.Q., Levkin, P.A., Roig, A. (2014) Origami Magnetic Cellulose: Controlled Magnetic Fraction and Patterning of Flexible Bacterial Cellulose. Journal of Materials Chemistry C, 2(31), 6312-6318
Zheng, Y., Yang, J.X., Zheng, W.L., Wang, X., Xiang, C., Tang, L., Zhang, W., Chen, S.Y., Wang, H.P. (2013) Synthesis of Flexible Magnetic Nanohybrid Based on Bacterial Cellulose Under Ultrasonic Irradiation. Mater. Sci. Eng. C, 33, 2407-2412
Zhu, H., Jia, S., Wan, T., Jia, Y., Yang, H., Li, J., Yan, L., Zhong, C. (2011) Biosynthesis of Spherical Fe3o4/bacterial Cellulose Nanocomposites as Adsorbents for Heavy Metal Ions. Carbohydrate Polymers, 86, 1558-1564
 

O članku

jezik rada: srpski
vrsta rada: izvorni naučni članak
DOI: 10.5937/tehnika2103273J
primljen: 28.05.2021.
prihvaćen: 10.06.2021.
objavljen u SCIndeksu: 10.07.2021.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka