|
Reference
|
|
*** (2013) Bacterial NanoCellulose: A Sophisticated Multifunctional Material CRC Press. Taylor & Francis Group
|
|
Anirudhan, T.S., Rejeena, S.R. (2013) Poly(methacrylic Acid-co-vinyl Sulfonic Acid) - Grafted-magnetite/Nanocellulose Superabsorbent Composite for the Selective Recovery and Separation of Immunoglobulin from Aqueous Solutions. Sep. Purif. Technol, 119: 82-93
|
|
Cao, L., Cheng, Z., Yan, M., Chen, Y. (2019) Anisotropic Rubber Nanocomposites Via Magnetic-induced Alignment of Fe3O4/cellulose Nanocrystals Hybrids Obtained by Templated Assembly. Chemical Engineering Journal, 363: 203-212
|
|
Eslahi, N., Mahmoodi, A., Mahmoudi, N., Zandi, N., Simchi, A. (2020) Processing and properties of Nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polym. Rev, 60, 144-170
|
|
Forbes, Z.G., Yellen, B.B., Halverson, D.S., Fridman, G., Barbee, K.A., Friedman, G. (2008) Validation of High Gradient Magnetic Field Based Drug Delivery to Magnetizable Implants Under Flow. IEEE Transactions on Bio-medical Engineering, 55(2), 643-649
|
|
Fuller, M.E., Andaya, C., McClay, K. (2018) Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. Journal of Microbiological Methods, 144: 145-151
|
|
Honglin, L., Yang, Z., Zhiwei, Y., Guangyao, X., Yizao, W. (2017) Constructing Superior Carbonnanofiber-based Composite Microwave Absorbers by Engineering Dispersion and Loading of Fe3O4 Nanoparticles on Three-dimensional Carbon Nanofibers Derived from Bacterial Cellulose. Materials Chemistry and Physics, 201: 130-138
|
|
Janićijević, A., Filipović, S., Pavlović, V.B., Sknepnek, A., Kovačevič, D., Đorđević, N., Mirković, M., Živković, P. (2021) Sinteza i struktura bakterijske celuloze primenom bakterija sirćetnog vrenja. u: Savetovanje o biotehnologiji sa međunarodnim učešćem, Čačak, 281-289
|
|
Katepetch, C., Rujiravanit, R. (2011) Synthesis of Magnetic Nanoparticle into Bacterial Cellulose Matrix by Ammonia Gas-enhancing in Situ Co-precipitation Method. Carbohydrate Polymers, 86(1), 162-170
|
|
Kumar, D.P., Kim, B.S. (2020) Bacterial cellulose production from biodiesel-derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules, 153: 902-911
|
|
La, C.S., de Vero, L., Anguluri, K., Brugnoli, M., Mamlouk, D., Gullo, M. (2021) Kombucha Tea as a Reservoir of Cellulose Producing Bacteria: Assessing Diversity among Komagataeibacter Isolates. Applied Sciences, 11(4):1595
|
|
Laroussi, C., Hassiba, C., Rahma, M., Mejdi, S., Emmanuel, B.M., Hassen, V.L.M. (2020) Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydrate Polymers, 247
|
|
Marins, J.A., Soares, B.G., Barud, H.S., Ribeiro, S.J.L. (2013) Mater. Sci. Eng. C-Mater. Biol. Appl, 30
|
|
Mashkour, M., Moradabadi, Z., Khazaeian, A. (2017) Physical and Tensile Properties of Epoxy Laminated Magnetic Bacterial Cellulose Nanocomposite Films. J. Appl. Polym. Sci, 134
|
|
Matsuto, T., Jung, C.H., Tanaka, N. (2004) Material and heavy metal balance in a recycling facility for home electrical appliances. Waste Management, 24(5), 425-436
|
|
Nata, I.F., Sureshkumar, M., Lee, C.K. (2011) One-pot Preparation of Amine-rich Magnetite/bacterial Cellulose Nanocomposite and Its Application for Arsenate Removal. RSC Advances, 1(4), 625-631
|
|
Park, M., Cheng, J., Choi, J., Kim, J., Hyun, J. (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf. B, 102: 238-242
|
|
Peng, Y., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z., Tshabalala, M.A. (2013) Influence of Drying Method on the Material Properties of Nanocellulose I: Thermostability and Crystallinity. Cellulose, 20(5): 2379-2392
|
|
Rajala, S., Siponkoski, T., Sarlin§, E., Mettänen, M., Vuoriluoto, M., Pammo, A., Juuti, J., Rojas, O.J., Franssila, S., Tuukkanen, S. (2016) Cellulose Nanofibril Film as a Piezoelectric Sensor Material. ACS Appl. Mater. Interfaces, 8(24): 15607-15614
|
1
|
Siró, I., Plackett, D. (2010) Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3): 459-494
|
|
Sureshkumar, M., Siswanto, D.Y., Lee, C.K. (2010) Magnetic Antimicrobial Nanocomposite Based Onbacterial Cellulose and Silver Nanoparticles. Journal of Materials Chemistry, 20(33), 6948-6955
|
|
Wan, Y.Z., Yang, Z.W., Xiong, G.Y., Guo, R.S., Liu, Z., Luo, H.L. (2015) Anchoring Fe3O4 Nanoparticles on Three-dimensional Carbon Nanofibers Toward Flexible Highperformance Anodes for Lithium-ion Batteries. Journal of Power Sources, 294, 414-419
|
|
Yingkamhaeng, N., Intapan, I., Sukyai, P. (2018) Fabrication and Characterisation of Functionalised Superparamagnetic Bacterial Nanocellulose Using Ultrasonic-Assisted in Situ Synthesis. Fibers and Polymers, 19(3):489-497
|
|
Yu, Y., Wang, Y., Deng, P., Zhang, T. (2020) Fe3O4 @rgo Hybrids Intercalated Nanocellulose-based Aerogels for Enhanced Ferromagnetic and Mechanical Properties. Journal of Applied Polymer Science, 137
|
|
Zeng, M.L., Laromaine, A., Feng, W.Q., Levkin, P.A., Roig, A. (2014) Origami Magnetic Cellulose: Controlled Magnetic Fraction and Patterning of Flexible Bacterial Cellulose. Journal of Materials Chemistry C, 2(31), 6312-6318
|
|
Zheng, Y., Yang, J.X., Zheng, W.L., Wang, X., Xiang, C., Tang, L., Zhang, W., Chen, S.Y., Wang, H.P. (2013) Synthesis of Flexible Magnetic Nanohybrid Based on Bacterial Cellulose Under Ultrasonic Irradiation. Mater. Sci. Eng. C, 33, 2407-2412
|
|
Zhu, H., Jia, S., Wan, T., Jia, Y., Yang, H., Li, J., Yan, L., Zhong, C. (2011) Biosynthesis of Spherical Fe3o4/bacterial Cellulose Nanocomposites as Adsorbents for Heavy Metal Ions. Carbohydrate Polymers, 86, 1558-1564
|
|
|
|