Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 1 od 1  
2018, vol. 59, br. 2, str. 265-272
Pt/Ru0,7Ti0,3O2 kao nanokatalizator za oksidaciju vodonika i njegova tolerancija na CO
aUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM, Srbija
bUniverzitet u Beogradu, Tehnološko-metalurški fakultet, Srbija

e-adresaobradovic@ihtm.bg.ac.rs
Projekat:
Razvoj, karakterizacija i primena nanostruktuiranih kompozitnih katalizatora i interaktivnih nosača u gorivnim spregovima i elektrolizi vode (MPNTR - 172054)

Ključne reči: platina; RuO2; TiO2; oksidacija vodonika; tolerancija na CO
Sažetak
Oksidacija čistog H2 i smeše H2/CO (100 ppm CO) je ispitivana na nanokatalizatoru koji se sastojao od čestica Pt na nosaču Ru0,7Ti0,3O2 (Pt/Ru0,7Ti0,3O2). Korišćene su metoda linearne voltametrije u rastvoru 0,1 M HClO4 i rotirajuća disk elektroda. Rezultati su upoređeni sa komercijalnim katalizatorom Pt/C. Za katalizator Pt/Ru0,7Ti0,3O2 je utvrđena dobra provodnost i stabilnost nosača u elektrohemijskim eksperimentima. Pokazano je da oksidacija adorbovanog CO na Pt/Ru0,7Ti0,3O2 počinje na negativnijim potencijalima nego na Pt/C. To ukazuje da su nanočestice Pt u bliskom kontaktu sa atomima Ru iz nosača, što omogućuje odigravanje bifunkcionalnog mehanizma i ispoljavanje elektronskog efekta. Uticaj trovanja katalizatora Pt/Ru0,7Ti0,3O2 i Pt/C adsorbovanim CO na oksidaciju H2 je ispitivan na nekoliko stepena pokrivenosti u opsegu od 0 do 0,6. Smanjenje struje oksidacije vodonika na površini delimično pokrivenoj adsorbovanim CO u oblasti malih prenapetosti 0,05-0,50 V je manje izraženo na Pt/Ru0,7Ti0,3O2 u odnosu na Pt/C. Ovo se pripisuje slabljenju interakcija Pt-CO što dovodi do povećane pokretljivosti CO na česticama Pt koje su u kontaktu sa Ru iz nosača Ru0,7Ti0,3O2.
Reference
Babić, B., Gulicovski, J., Gajić-Krstajić, Lj., Elezović, N., Radmilović, V.R., Krstajić, N.V., Vračar, Lj.M. (2009) Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution. Journal of Power Sources, 193(1): 99-106
Bard, A.J., Faulkner, R.L. (1980) Electrochmical methods. New York: John Wiley & Sons
Binninger, T., Fabbri, E., Kotz, R., Schmidt, T.J. (2013) Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. Journal of the Electrochemical Society, 161(3): H121-H128
Boujday, S., Wünsch, F., Portes, P., Bocquet, J., Colbeau-Justin, C. (2004) Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercritical drying. Solar Energy Materials and Solar Cells, 83(4): 421-433
Camara, G.A., Ticianelli, E.A., Mukerjee, S., Lee, S.J., McBreen, J. (2002) The CO Poisoning Mechanism of the Hydrogen Oxidation Reaction in Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society, 149(6): A748
Chevallier, L., Bauer, A., Cavaliere, S., Hui, R., Rozière, J., Jones, D.J. (2012) Mesoporous Nanostructured Nb-Doped Titanium Dioxide Microsphere Catalyst Supports for PEM Fuel Cell Electrodes. ACS Applied Materials & Interfaces, 4(3): 1752-1759
Conway, B.E., Tilak, B.V. (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 47(22-23): 3571
Du, Q., Wu, J., Yang, H. (2014) Pt@Nb-TiO 2 Catalyst Membranes Fabricated by Electrospinning and Atomic Layer Deposition. ACS Catalysis, 4(1): 144-151
Durst, J., Simon, C., Hasche, F., Gasteiger, H.A. (2014) Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. Journal of the Electrochemical Society, 162(1): F190-F203
Elezović, N.R., Babić, B.M., Radmilovic, V.R., Vračar, Lj.M., Krstajić, N.V. (2013) Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction. Applied Catalysis B: Environmental, 140-141: 206-212
Elezović, N.R., Gajić-Krstajić, Lj., Radmilović, V., Vračar, Lj., Krstajić, N.V. (2009) Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. Electrochimica Acta, 54(4): 1375-1382
Elezović, N.R., Babić, B.M., Vračar, Lj.M., Radmilović, V.R., Krstajić, N.V. (2009) Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction. Physical Chemistry Chemical Physics, 11(25): 5192
Elezović, N.R., Babić, B.M., Radmilović, V., Gajić-Krstajić, L.M., Krstajić, N.V., Vračar, L.M. (2011) Novi Pt katalizator na nosaču na bazi TiO2 za reakciju oksidacije vodonika # Novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction. Journal of the Serbian Chemical Society, vol. 76, br. 8, str. 1139-1152
Esparbé, I., Brillas, E., Centellas, F., Garrido, J.A., Rodríguez, R.M., Arias, C., Cabot, P. (2009) Structure and electrocatalytic performance of carbon-supported platinum nanoparticles. Journal of Power Sources, 190(2): 201-209
Gasteiger, H.A., Markovic, N., Ross, P.N., Cairns, E.J. (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. Journal of Physical Chemistry, 98(2): 617-625
Gasteiger, H.A., Markovic, N.M., Ross, P.N. (1995) H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects. Journal of Physical Chemistry, 99(20): 8290-8301
Gojković, S.Lj., Babić, B.M., Radmilović, V.R., Krstajić, N.V. (2010) Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs. Journal of Electroanalytical Chemistry, 639(1-2): 161-166
Grgur, B., Markovic, N., Ross, P. (1998) Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys. Electrochimica Acta, 43(24): 3631-3635
Haas, O.E., Briskeby, T.S., Kongstein, O.E., Tsypkin, M., Tunold, R., Boressen, B.T. (2008) Synthesis and characterisation of RuxTix-1O2 as a catalyst support for polymer electrolyte fuel cell. J. New Mat. Electrochem. Systems, 9-14; 11
Ho, V.T.T., Nguyen, N.G., Pan, C., Cheng, J., Rick, J., Su, W., Lee, J., Sheu, H., Hwang, B. (2012) Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy, 1(5): 687-695
Huang, S., Ganesan, P., Park, S., Popov, B.N. (2009) Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the American Chemical Society, 131(39): 13898-13899
Huang, S., Ganesan, P., Popov, B.N. (2010) Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Applied Catalysis B: Environmental, 96(1-2): 224-231
Huang, S-Y., Ganesan, P., Popov, B.N. (2011) Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl. Catal. B- Environ, 71-77; 102
Igarashi, H., Fujino, T., Watanabe, M. (1995) Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. Journal of Electroanalytical Chemistry, 391(1-2): 119-123
Lo, C., Wang, G., Kumar, A., Ramani, V. (2013) TiO2-RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Applied Catalysis B: Environmental, 140-141: 133-140
Obradović, M.D., Gojković, S.Lj., Elezović, N.R., Ercius, P., Radmilović, V.R., Vračar, Lj.D., Krstajić, N.V. (2012) The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. Journal of Electroanalytical Chemistry, 671: 24-32
Obradović, M.D., Lačnjevac, U.Č., Babić, B.M., Ercius, P., Radmilović, V.R., Krstajić, N.V., Gojković, S.Lj. (2015) Ru x Ti 1−x O 2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation. Applied Catalysis B: Environmental, 170-171: 144-152
Park, K., Seol, K. (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochemistry Communications, 9(9): 2256-2260
Schmidt, T., Gasteiger, H., Behm, R. (1999) Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst. Electrochemistry Communications, 1(1): 1-4
Shao, Y., Liu, J., Wang, Y., Lin, Y. (2009) Novel catalyst support materials for PEMfuelcells: current status and future prospects. J. Mater. Chem., 19(1): 46-59
Shao, Y., Yin, G., Gao, Y. (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 171(2): 558-566
Spendelow, J.S., Babu, P.K., Wieckowski, A. (2005) Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Current Opinion in Solid State and Materials Science, 9(1-2): 37-48
Strmcnik, D.S., Rebec, P., Gaberscek, M., Tripkovic, D., Stamenkovic, V., Lucas, C., Marković, N.M. (2007) Relationship between the Surface Coverage of Spectator Species and the Rate of Electrocatalytic Reactions. Journal of Physical Chemistry C, 111(50): 18672-18678
Thanh, H.V.T., Pillai, K. C., Chou, H., Pan, C., Rick, J., Su, W., Hwang, B., Lee, J., Sheu, H., Chuang, W. (2011) Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 4(10): 4194
Tong, Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., Oldfield, E. (2002) An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. Journal of the American Chemical Society, 124(3): 468-73
Vogel, W., Lundquist, J., Ross, P., Stonehart, P. (1975) Reaction pathways and poisons-II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim. Acta, 79-93; 20
Wang, D., Subban, C.V., Wang, H., Rus, E., di Salvo, F.J., Abruña, H.D. (2010) Highly Stable and CO-Tolerant Pt/Ti 0.7 W 0.3 O 2 Electrocatalyst for Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 132(30): 10218-10220
Wang, Y., Wilkinson, D.P., Zhang, J. (2011) Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews, 111(12): 7625-7651
Zhou, J., Zhou, X., Sun, X., Li, R., Murphy, M., Ding, Z., Sun, X., Sham, T. (2007) Interaction between Pt nanoparticles and carbon nanotubes - An X-ray absorption near edge structures (XANES) study. Chemical Physics Letters, 437(4-6): 229-232
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/ZasMat1802265O
objavljen u SCIndeksu: 13.07.2018.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka