Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:8

Sadržaj

članak: 1 od 1  
2021, vol. 49, br. 2, str. 201-217
Efekat nikosulfurona na biohemijske markere oksidativnog stresa u listu i korijenu kukuruza
aUniverzitet u Banjoj Luci, Prirodno-matematički fakultet, Republika Srpska, BiH
bUniverzitet u Banjoj Luci, Poljoprivredni fakultet, Republika Srpska, BiH

e-adresabiljana.kukavica@pmf.unibl.org
Ključne reči: nikosulfuron; hibridi kukuruza; oksidativni stres; antioksidativni metabolizam; biohemijski parametri
Sažetak
Kukuruz (Zea mays L.) je jedna od najznačajnijih poljoprivrednih kultura i kao takav, predstavlja predmet mnogih istraživanja, u cilju iskorištenja potpunog genetskog potencijala i kvaliteta, te zaštite od štetnog djelovanja spoljašnjih faktora. Obzirom da korov u početnim fazama razvoja biljaka kukuruza može ozbiljno uticati na prinos efi kasno suzbijanje korova je od velikog značaja. Kao najznačajniji herbicidi u borbi protiv korovskih biljaka u kukuruzu izdvojili su se oni iz grupe sulfonilurea. U radu je ispitan uticaj različitih koncentracija (150 mg/mL i 250 mg/ mL) herbicida nikosulfurona na biohemijske (oksidativne i antioksidativne) parametre listova i korijena dva hibrida (ZP 555 i ZP 606) kukuruza. Nakon tretmana biljaka kukuruza različitim koncentracijama nikosulfurona u trajanju od pet dana, mjerene su koncentracije vodonik peroksida (H2 O2 ), fenolnih komponenti, ukupan hlorofi l, te aktivnosti enzima peroksidaza Klase III (POD) i askorbat peroksidaza (APX). Rezultati su pokazali pojavu specifičnih razlika u listu i korijenu oba hibrida kukuruza. Uočene su razlike pri djelovanju različitih koncentracija nikosulfurona i razlike u tolerantnosti hibrida na nikosulfuron.
Reference
Ahammed, G.J., Choudhary, S.P., Chen, S., Xia, X., Shi, K., Zhou, Y., Yu, J. (2013) Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany, 64: 199-213
Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E. (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12): 1337-1344
Asada, K., Takahashi, M. (1987) Production and scavenging of active oxygen in chloroplasts. u: Kyle D. J.; Osmond C. B.; Arntzen, C. J. [ur.] Photoinhibition, Amsterdam: Elsevier, 227-287
Brown, H.M. (1990) Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pesticide Science, 29(3): 263-281
Daniel, O., Meier, M.S., Schlatter, J., Frischknecht, P. (1999) Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides. Environmental Health Perspectives, 107(suppl 1): 109-114
Doganlar, Z.B. (2012) Quizalofop-p-ethyl-induced phytotoxicity and genotoxicity in Lemna minor and Lemna gibba. J. Environm. Sci. and Health A Tox. Hazard Subst. Environ. Eng., 47(11): 1631-1643
Häkkinen, S.H., Törrönen, A.R. (2000) Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Research International, 33(6): 517-524
Hörtensteiner, S., Kräutler, B. (2011) Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta, Bioenerget, 1807(8): 977-988
Horvat, A. (2019) Utvrđivanje prisutnosti pesticida u odabranom citrusnom voću. Zagreb: Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet, Specijalistički rad
Huda-Faujan, N., Noriham, A., Norrakiah, A.S., Babji, A.S. (2009) Antioxidant activity of plants methanolic extracts containing phenolic compounds. African J. Biotechnol, 8(3): 484-489
Huseynova, I., Balakishiyeva, G., Aliyeva, D., Gurbanova, U., Bayramova, J., Mustafayev, N., Aliyev, J. (2017) Changes in the activities of metabolic enzymes and antioxidant defense system in 'Candidatus phytoplasma solani' infected pepper (Capsicum annuum L.) plants. Net Journal of Agricultural Science, 5(2): 58-65
Kravić, N., Dragičević, V., Stefanović, L. (2006) Ispitivanje delovanja Nikosulfurona na neke samooplodne linije kukuruza. Acta herbologica, vol. 15, br. 1, str. 1-8
Liu, S., He, Y., Tian, H., Yu, C., Tan, W., Li, Z., Duan, L. (2019) Application of Brassinosteroid Mimetics Improves Growth and Tolerance of Maize to Nicosulfuron Toxicity. Journal of Plant Growth Regulation, 38(2): 701-712
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275
Lukatkin, A.S., Gar'kova, A.N., Bochkarjova, A.S., Nushtaeva, O.V., da Silva, J.A.T. (2013) Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pesticide Biochemistry and Physiology, 105(1): 44-49
Maehly, A.C., Chance, B. (1954) The assay of catalases and peroxidases. Methods Biochem. Anal, 1: 357-424
Mishra, K.K., Rai, U.N., Prakash, O. (2007) Bioconcentration and Phytotoxicity of Cd in Eichhornia crassipes. Environmental Monitoring and Assessment, 130: 237-243
Miyake, C., Asada, K. (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology, 33(5): 541-553
Poljšak, B., Jamnik, P. (2010) Methodology for oxidative state detection in biological systems. u: Kozyrev D.; Slutsky V. [ur.] Handbook of free raicals: Formation, types and effects, Nova Science Publishers, Inc, 421-448
Radovanović, D.S., Ranković, G.Ž. (2004) Oxidative stress, stress proteins and antioxidants in exercise. Acta medica Medianae, vol. 43, br. 4, str. 45-47
Ray, T.B. (1985) The site of action of the sulfonylurea herbicides. u: Proc. 1985 Br. Crop Prot. Conf-Weeds, 131-138
Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z., Navari-Izzo, F. (2010) Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 48(9): 772-777
Topolovec, D. (2008) Herbicidi i mehanizam djelovanja III. Glasnik Zaštite Bilja, 31(5): 98-101
Veljović-Jovanović, S., Vidović, M., Morina, F. (2017) Ascorbate as a key player in plant abiotic stress response and tolerance. u: Hossain M. A.; Munne-Bosch S.; Burritt D. J.; Diaz-Vivancos P.; Fujita M.; Lorence A. [ur.] Ascorbic acid in plant growth, development and stress tolerance, Cham: Springer, 47-109
Wang, J., Zhong, X., Li, F., Shi, Z. (2018) Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.). Pesticide Biochemistry and Physiology, 145: 108-117
Wettstein, D.V. (1957) Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Experimental Cell Research, 12(3): 427-506
Wolfe, K., Wu, X., Liu, R.H. (2003) Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3): 609-614
Yabuta, Y., Maruta, T., Yoshimura, K., Ishikawa, T., Shigeoka, S. (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant and Cell Physiology, 45(11): 1586-1594
 

O članku

jezik rada: srpski
vrsta rada: neklasifikovan
DOI: 10.5937/BiljLek2102201K
objavljen u SCIndeksu: 26.03.2021.

Povezani članci

Nema povezanih članaka