Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 1  
2021, vol. 46, br. 3, str. 49-60
Daljinski indeksi vegetacije izračunati programom SAGA GIS - poređenje vertikalnog i prilagođenog pristupa promena zemljišta za sliku LANDSAT TM
Russian Academy of Sciences, Schmidt Institute of Physics of the Earth, Moscow, Russia

e-adresapauline.lemenkova@gmail.com
Ključne reči: SAGA GIS; Landsat TM; kartografija; indeks vegetacije; PVI; TSAVI; poljoprivreda; mapiranje; Island; životna sredina
Sažetak
Landsat-TM slika je obrađena upotrebom SAGA GIS programa za testiranje indeksa vegetacije na osnovu udaljenosti u poljoprivrednim kartama: 4 pristupa indeksa vertikalne vegetacije (PVI) i 2 indeksa vegetacije TSAVI prilagođenog pristupa. PVI vegetacije sa linije zemljišta (podloge) ukazivao je na zdravstvenu ispravnost kao indeks lisne površine (LAI). Refleksija vegetacije ima linearni odnos sa linijom pozadine. Četiri PVI modela i dva TSAVI pokazala su koeficijente determinacije sa LAI. Podaci pokazuju varijacije u izračunatim koeficijentima. Način u histogramima PVI zasnovan na 4 različita algoritma pokazuje razliku: -7,1, -8,36, 2,78 i 7,0. Skup podataka za 2 pristupa TSAVI: prvi slučaj kreće se u rasponu od 4.4 do 80.6 sa histogramom u obliku zvona (od 8.09 do 23.29) za prvi algoritam i nepravilnim oblikom za drugi algoritam sa nekoliko načina (0,11 do 0,2) i opadajućim do 0,26. SAGA GIS program prikazuje vrednosti PVI i TSAVI izračunavanjem NDVI na osnovu preseka podataka vegetacije i pozadine podloge (zemljišta). Upotrebom podataka NIR i R, urađena je linearna regresija pomoću jednačine ugrađene u SAGA GIS. Prednosti PVI i TSAVI sastoje se u prilagođenom položaju piksela na liniji osvetljenja zemljišta što poboljšava u odnosu na VI na temelju nagiba. U radu je prikazana primjena SAGA GIS programa u poljoprivrednim studijama.
Reference
Abburu, S., Golla, S.B. (2015) Satellite image classification methods and techniques: A review. International Journal of Computer Applications, 119(8): 20-25
Ahmed, K.R., Akter, S. (2017) Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with landsat multi-spectral surface reflectance satellite data. Remote Sensing Applications: Society and Environment, 8: 168-181
Baret, F., Guyot, G. (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 104: pp.88-95
Baret, F., Guyot, G., Major, D. (1989) TSAVI: A Vegetation Index which minimizes soil brightness effects on LAI and APAR estimation. u: Conference IEEE Xplore
Bhandari, A.K., Kumar, A., Singh, G.K. (2012) Feature extraction using normalized difference Vegetation Index (NDVI): A case study of Jabalpur city. Procedia Technology, 6: 612-621
Böhner, J., Blaschke, T., Montanarella, L. (2008) SAGA: Seconds out. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19, 113 pp
Broge, N.H., Leblanc, E. (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2): 156-172
du Plessis, W.P. (1999) Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. Journal of Arid Environments, 42(4): 235-260
Erlendsson, E. (2007) Environmental change around the time of the Norse settlement of Iceland. Aberdeen: University of Aberdeen, pp. 301
Etzelmüller, B., Patton, H., Schomacker, A., Czekirda, J., Girod, L., Hubbard, A., Lilleøren, K.S., Westermann, S. (2020) Icelandic permafrost dynamics since the Last Glacial Maximum: Model results and geomorphological implications. Quaternary Science Reviews, 233: 106236
Evangelides, C., Nobajas, A. (2020) Red-edge normalised difference Vegetation Index (NDVI705) from sentinel-2 imagery to assess post-fire regeneration. Remote Sensing Applications: Society and Environment, 17: 100283
Flóvenz, Ó.G., Gunnarsson, K. (1991) Seismic crustal structure in Iceland and surrounding area. Tectonophysics, 189(1-4): 1-17
French, A.N., Hunsaker, D.J., Sanchez, C.A., Saber, M., Gonzalez, J.R., Anderson, R. (2020) Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agricultural Water Management, 239: 106266
Gao, L., Wang, X., Johnson, B.A., Tian, Q., Wang, Y., Verrelst, J., Mu, X., Gu, X. (2020) Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 364-377
Gim, H., Ho, C., Jeong, S., Kim, J., Feng, S., Hayes, M.J. (2020) Improved mapping and change detection of the start of the crop growing season in the US Corn Belt from long-term AVHRR NDVI. Agricultural and Forest Meteorology, 294: 108143
Gísladottir, G. (2001) Ecological disturbance and soil erosion on grazing land in southwest Iceland. u: Land degradation, Springer Netherlands, 109-126
Gonçalves, R.M., Saleem, A., Queiroz, H.A.A., Awange, J.L. (2019) A fuzzy model integrating shoreline changes, NDVI and settlement influences for coastal zone human impact classification. Applied Geography, 113: 102093
Greipsson, S. (2012) Catastrophic soil erosion in Iceland: Impact of long-term climate change, compounded natural disturbances and human driven land-use changes. Catena, 98: 41-54
Gu, Y., Wylie, B.K., Howard, D.M., Phuyal, K.P., Jia, L. (2013) NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecological Indicators, 30: 1-6
Gudmundsson, A., Brynjolfsson, S., Jonsson, M.T. (1993) Structural analysis of a transform fault-rift zone junction in North Iceland. Tectonophysics, 220(1-4): 205-221
Hannington, M., Herzig, P., Stoffers, P., Scholten, J., Botz, R., Garbe-Schönberg, D., Jonasson, I.R., Roest, W. (2001) First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the North coast of Iceland. Marine Geology, 177(3-4): 199-220
He, L., Zhang, H., Zhang, Y., Song, X., Feng, W., Kang, G., Wang, C., Guo, T. (2016) Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 73: 170-185
Huete, A. (1988) A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309
Ireland, G., Petropoulos, G.P. (2015) Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Applied Geography, 56: 232-248
Kardjilov, M.I., Gisladottir, G., Gislason, S.R. (2006) Land degradation in northeastern Iceland: Present and past carbon fluxes. Land Degradation & Development, 17(4): 401-417
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2013) Interpretation of landscape values, typology and quality using methods of spatial metrics for ecological planning. u: Environmental and Climate Technologies, October 14, 2013. Riga, Latvia
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2014) Landscape metrics as indicator for ecological significance: Assessment of Sitno Natura 2000 sites, Slovakia. u: Ecology and Environmental Protection, March 19-20, 2014, Minsk: BSU Press, 85-90
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2013) Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosciences, 5,1, 28-42
Lemenkova, P. (2011) Seagrass mapping and monitoring along the coasts of Crete, Greece. Netherlands: University of Twente, M.Sc. Thesis, 158
Lemenkova, P. (2020) GMT based comparative geomorphological analysis of the Vityaz and Vanuatu trenches, Fiji Basin. Geodetski List, 74(1). pp. 19-39
Lemenkova, P. (2020) R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python for modelling diagrams of dendrogram trees. Carpathian Journal of Electronic and Computer Engineering, 13(1), 5-12
Lemenkova, P., Promper, C., Glade, T. (2012) Economic assessment of landslide risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. u: Eberhardt, E.; Froese, C.; Turner, A.K.; Leroueil, S. [ur.] Protecting Society through Improved Understanding. 11 th International Symposium on Landslides & the 2 nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2-8, 2012, Banff, Cana, 279-285
Lemenkova, P. (2013) Monitoring changes in agricultural landscapes of Central Europe, Hungary: Application of ILWIS GIS for image processing. u: Geoinformatics: Theoretical and Applied Aspects. Ukraine, Kiev, May 13-16, EAGE Publications BV
Lemenkova, P. (2014) Detection of Vegetation coverage in urban agglomeration of Brussels by NDVI indicator using eCognition software and remote sensing measurements. u: GIS and remote sensing, Tsaghkadzor, Armenia, pp.112-119
Lemenkova, P. (2014) Opportunities for classes of geography in the high school: The Use of 'CORINE' project data, satellite images and IDRISI GIS for geovisualization. u: Perspectives for the development of higher education, Grodno, Belarus, 284-286
Lemenkova, P. (2020) Hyperspectral Vegetation Indices calculated by Qgis using Landsat TM image: A case study of northern Iceland. Advanced Research in Life Sciences, 4(1): 70-78
Lemenkova, P. (2020) Sentinel-2 for high resolution mapping of slope-based Vegetation Indices using machine learning by SAGA GIS. Transylvanian Review of Systematical and Ecological Research, 22(3): 17-34
Lemenkova, P. (2018) R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35-42
Lemenkova, P. (2019) Statistical analysis of the Mariana Trench geomorphology using R programming language. Geodesy and cartography, 45(2), 57-84
Lemenkova, P. (2019) GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga trenches, Southwest Pacific ocean. Geographia Technica, 14(2): 39-48
Lemenkova, P. (2020) Java and Sumatra segments of the Sunda Trench: Geomorphology and geophysical settings analysed and visualized by GMT. Glasnik Srpskog geografskog drustva, 100(2): 1-23
Lemenkova, P. (2020) Using R packages 'tmap', 'raster' and 'ggmap' for cartographic visualization: An example of dem-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova - Geografski fakultet Univerziteta u Beogradu, br. 68, str. 99-116
Moles, A. (1964) Théorie de l'information et message cartographique. Revue française des sciences et des techniques, 32: 11-16
Möllmann, J., Buchholz, M., Kölle, W., Musshoff, O. (2020) Do remotely-sensed vegetation health indices explain credit risk in agricultural microfinance?. World Development, 127: 104771
Monkhouse, F.J., Wilkinson, H.R. (1976) Maps and diagrams, their compilation and construction. London: Methuen & Co. Ltd, 527 p, 3rd ed
Perry, C., Lautenschlager, L.F. (1984) Functional equivalence of spectral Vegetation Indices. Remote sensing of environment, 14(1-3): pp.169-182
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S. (1994) A modified soil adjusted vegetation index. Remote Sensing of Environment, 48. pp. 119-126
Raynolds, M.K., Walker, D.A., Maier, H.A. (2006) NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment, 102(3-4): 271-281
Raynolds, M.K., Comiso, J.C., Walker, D.A., Verbyla, D. (2008) Relationship between satellite-derived land surface temperatures, Arctic vegetation types, and NDVI. Remote Sensing of Environment, 112(4): 1884-1894
Richardson, A.J., Wiegand, C.L. (1977) Distinguishing Vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12). pp.1541-1552
Schenke, H.W., Lemenkova, P. (2008) Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16-21
Slocum, T.A., Mcmaster, R.B., Kessler, F.C., Howard, H.H. (2005) Thematic cartography and geographic visualisation. Upper Saddle River: Prentice Hall, Part II Mapping Tehniques, Chapter 13 Choropleth Mapping
Suetova, I.A., Ushakova, L.A., Lemenkova, P. (2005) Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138-142
Suetova, I.A., Ushakova, L.A., Lemenkova, P. (2005) Geoecological mapping of the Barents sea using GIS. u: International cartographic conference
Walther, D., Shabaani, S. (1991) Large scale monitoring of rangeland Vegetation using NOAA/11 AVHRR LAC data. Range Management Handbook of Kenya, 3(4). pp.105
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/PoljTeh2103049L
primljen: 30.04.2021.
revidiran: 20.05.2021.
prihvaćen: 29.05.2021.
objavljen u SCIndeksu: 17.09.2021.

Povezani članci

Nema povezanih članaka