## Akcije

kako citirati ovaj članak
podeli ovaj članak

## Metrika

• citati u SCIndeksu:
• citati u CrossRef-u:
• posete u poslednjih 30 dana:10
• preuzimanja u poslednjih 30 dana:9   članak: 1 od 1
2018, vol. 22, br. 1, str. 43-54
Generalized C Ψ β - rational contraction and fixed point theorem with application to second order deferential equation
(naslov ne postoji na srpskom)
Sandip University, Department of Mathematics, Nashik, Maharashtra, India

Ključne reči: Fixed point; C Ψ β - rational contraction; partially ordered metric spaces; diﬀerential equations
Sažetak
(ne postoji na srpskom)
In this article, generalized C Ψ β - rational contraction is defined and the existence and uniqueness of fixed points for self map in partially ordered metric spaces are discussed. As an application, we apply our result to find existence and uniqueness of solutions of second order diﬀerential equations with boundary conditions.
 Reference Altun, I., Simsek, H. (2010) Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl., 621492, 17 Amini-Harandi, A., Emami, H. (2010) A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Analysis: Theory, Methods & Applications, 72(5): 2238-2242 Babu, G.V.R., Sailaja, P.D., Kidane, K.T. (2013) A Fixed Point Theorem in Orbitally Complete Partially Ordered Metric Spaces. Journal of Operators, 2013: 1-8 Bhardwaj, V., Gupta, V., Mani, N. (2017) Common fixed point theorems without continuity and compatible property of maps. Boletim da Sociedade Paranaense de Matemática, 35(3): 67 Bhaskar, T. G., Lakshmikantham, V. (2006) Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis: Theory, Methods & Applications, 65(7): 1379-1393 Dass, B.K., Gupta, S. (1975) An extension of Banach contraction principle through rational expression. Indian J. Pure Appl. Math., 12 (6): 1455-1458 Gupta, V., Shatanawi, W., Mani, N. (2017) Fixed point theorems for () -Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary diﬀerential equations. Journal of Fixed Point Theory and Applications, 19(2): 1251-1267 Gupta, V., Mani, N. (2013) Existence and uniqueness of fixed point for contractive mapping of integral type. International Journal of Computing Science and Mathematics, 4(1): 72 Gupta, V., Ramandeep,, Mani, N., Tripathi, A.K. (2016) Some Fixed Point Result Involving Generalized Altering Distance Function. Procedia Computer Science, 79: 112-117 Harjani, J., Sadarangani, K. (2009) Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Analysis: Theory, Methods & Applications, 71(7-8): 3403-3410 Harjani, J., Sadarangani, K. (2010) Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4): 1188-1197 Jaggi, D.S. (1977) Some unique fixed point theorems. Indian J. Pure Appl. Math. s, 223-230; 8 Karapinar, E., Tas, K. (2011) Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl., 61 (11): 3370-3380 Karapinar, E., Erhan, I.M., Aksoy, U. (2014) Weak - contractions on partially ordered metric spaces and applications to boundary value problems. Boundary Value Problems, Article ID: 149 Khan, M.S., Swaleh, M., Sessa, S. (1984) Fixed point theorems by altering distances between the points. Bulletin of the Australian Mathematical Society, 30(01): 1 Lakshmikantham, V., Ćirić, L. (2009) Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(12): 4341-4349 Nashine, H.K., Samet, B. (2011) Fixed point results for mappings satisfying -weakly contractive condition in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 74(6): 2201-2209 Nieto, J.J., Rodríguez-López, R. (2005) Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22(3): 223-239 Nieto, J.J., Rodríguez-López, R. (2007) Existence and Uniqueness of Fixed Point in Partially Ordered Sets and Applications to Ordinary Differential Equations. Acta Mathematica Sinica, English Series, 23(12): 2205-2212 Nieto, J.J., Pouso, R.L., Rodríguez-López, R. (2007) Fixed point theorems in ordered abstract spaces. Proceedings of the American Mathematical Society, 135(08): 2505-2518 Ran, A.C.M., Reurings, M.C.B. (2004) A fixed point theorem in partially ordered sets and some applications to matrix equations. Proceedings of the American Mathematical Society, 132(05): 1435-1444 Shatanawi, W., Al-Rawashdeh, A. (2012) Common fıxed points of almost generalized (ψ, ϕ)-contractive mappings in ordered metric spaces. Fixed Point Theory and Applications, 2012(1): 80 Suzuki, T. (2008) Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. Journal of Mathematical Analysis and Applications, 340(2): 1088-1095 Suzuki, T. (2009) A new type of fixed point theorem in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 71(11): 5313-5317 Yan, F., Su, Y., Feng, Q. (2012) A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations. Fixed Point Theory and Applications, 2012(1): 152