Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 1 od 1  
2018, vol. 22, br. 2, str. 59-67
A note on the proofs of generalized Radon inequality
(naslov ne postoji na srpskom)
aCentral South University Changsha, School of Mathematics and Statistics, Hunan, P.R. China
bSouthwestern University of Finance and Economic Chengdu, Institute of Mathematics, School of Economic Mathematics, Sichuan, P.R. China
cZhejiang University, School of Mathematical Sciences, Hangzhou, Zhejiang, P.R. China

e-adresayli777@qq.com, guxianming@live.cn, jcxshaw@outlook.com
Ključne reči: the Bergström inequality; the Radon inequality; the weighted power mean inequality; equivalence; the Hölder inequality
Sažetak
(ne postoji na srpskom)
In this paper, we introduce and prove several generalizations of the Radon inequality. The proofs in the current paper unify and also are simpler than those in early published work. Meanwhile, we find and show the mathematical equivalences among the Bernoulli inequality, the weighted AM-GM inequality, the Hölder inequality, the weighted power mean inequality and the Minkowski inequality. Finally, some applications involving the results proposed in this work are shown.
Reference
Abramovich, S., Mond, B., Pečarić, J.E. (1997) Sharpening Jensen's Inequality and a Majorization Theorem. Journal of Mathematical Analysis and Applications, 214(2): 721-728
Batinetu-Giurgiu, D.M., Pop, O.T. (2010) A generalization of Radon's inequality. Creative Mathematics and Informatics, 19 (2); 116-121
Bellman, R. (1955) Notes on Matrix Theory--IV (An Inequality Due to Bergstrom). American Mathematical Monthly, 62(3): 172
Bergström, H. (1952) A triangle inequality for matrices. u: Den Elfte Skandinaviske Matematikerkongress, Trondheim, 1949, Oslo: Johan Grundt Tanums Forlag, 264-267
Cvetkovski, Z. (2012) Inequalities. Theorems, Techniques and Selected Problems. Heidelberg: Springer- Verlag Berlin Heidelberg
Fan, K. (1959) Generalization of Bergsrröm inequality. American Mathematical Monthly, 66(2): 153
Hardy, G.H., Littlewood, J.E., Pólya, G. (1934) Inequalities. Cambridge, UK: Cambridge University Press
Li, Y., Gu, X., Zhao, J. (2018) The Weighted Arithmetic Mean-Geometric Mean Inequality is Equivalent to the Hölder Inequality. Symmetry, 10(9): 380
Maligranda, L. (2001) Equivalence of the Hölder-Rogers and Minkowski Inequalities. Mathematical Inequalities & Applications, (2): 203-207
Manfrino, R.B., Gómez, O.J.A., Delgado, R.V. (2009) Inequalities. Basel: Springer Nature
Mitrinovic, D.S., Pecaric, J.E., Fink, A.M. (1993) Classical and New Inequalities in Analysis. u: Mathematics and Its Applications (East European Series), Dordrecht: Kluwer Amcademic, Vol. 61
Morrey, C.B. (1933) A Class of Representations of Manifolds. Part I. American Journal of Mathematics, 55(1/4): 683
Mortici, C. (2011) A new refinement of the Radon inequality. Mathematical Communications, 16 (2); 319-324
Pecaric, J.E., Proschan, F., Tong, Y.I. (1992) Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering. San Diego, CA: Academic Press
Radon, J. (1913) Über die absolut additiven Mengenfunktionen. Wiener Sitzungsber, (IIa), 122, 1295-1438
Yang, K-C. (2002) A note and generalization of a fractional inequality. Journal of Yueyang Normal University, Natural Science Edition, in Chinese, 15 (4); 9-11
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor1802059L
objavljen u SCIndeksu: 20.12.2018.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka