Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 1  
2020, vol. 24, br. 1, str. 45-62
On exponentially (h1, h2)-convex functions and fractional integral inequalities related
(naslov ne postoji na srpskom)
aPontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Escuela de Física y Matemática, Quito, Ecuador
bUniversidad Centroccidental Lisandro Alvarado, Decanato de Ciencias Económicas y Empresariales, Departamento de Técnicas Cuantitativas, Barquisimeto, Venezuela
cGiresun University, Faculty of Arts and Science, Department of Mathematics, Giresun, Turkey

e-adresamjvivas@puce.edu.ec, jorgehernandez@ucla.edu.ve, sercan.turhan@giresun.edu.tr
Ključne reči: Exponentially (h1, h2)-convex function; Raina's fractional integral operator; fractional integral inequalities
Sažetak
(ne postoji na srpskom)
In this work the concept of exponentially (h1, h2)-convex function is introduced and using it, the Hermite-Hadamard inequality and some bounds for the right side of this inequality, via Raina's fractional integral operator and generalized convex functions, are established.
Reference
Agarwal, R.P., Luo, M., Raina, R.K. (2016) On Ostrowski type inequalities. Fasciculi Mathematici, 56(1): 5-27
Antczak, T. (2001) (P,r)-invex sets and functions. Journal of Mathematical Analysis and Applications, 263(2): 355-379
Breckner, W.W. (1978) Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen. Publications de l'Institut Mathematique, 23: 13-20
Dragomir, S.S., Pecaric, J., Persson, L.E. (1995) Some inequalities of Hadamard type. Soochow J. Math, 21, 335-341
Dragomir, S.S., Gomm, I. (2015) Some Hermite-Hadamard type inequalities for functions whose exponentials are convex. Studia Universitatis Babeş-Bolyai Mathematica, 60: 527-534
Gristescu, G., Noor, M.A., Awan, M.U. (2015) Bounds of the second degree cumulative frontier gaps of functions with generalized convexity. Carpathian Journal of Mathematics, 31(2): 173-180
Hadamard, J. (1893) Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. Journal de Mathématiques Pures et Appliquées, 4(9): 171-216
Hernández, H.J.E. (2019) Some fractional integral inequalities of Hermite Hadamard and Minkowski type. Selecciones Matemáticas (National University of Trujillo, Perú), 6: 41-48
Hernández, H.J.E., Vivas-Cortez, M.J. (2019) Hermite-Hadamard Inequalities type for Raina's fractional integral operator using e-convex functions. Revista Matemática: Teoría y Aplicaciones, 26(1): 1-19
Hernández, H.J.E., Vivas-Cortez, M.J. (2018) On a Hardy's inequality for a fractional integral operator. Annals of the University of Craiova, Mathematics and Computer Science Series, 45(2): 232-242
Hudzik, H., Maligranda, L. (1994) Some remarks ons-convex functions. Aequationes Mathematicae, 48(1): 100-111
Iqbal, M., Iqbal, B.M., Nazeer, K. (2015) Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals. Bulletin of the Korean Mathematical Society, 52(3): 707-716
Kunt, M., Karapinar, D., Turhan, S., Iscan, I. (2018) The right Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions. Journal of Inequalities and Special Functions, 9 (1): 45-57
Liu, W., Wen, W., Park, J. (2016) Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. Journal of Nonlinear Sciences and Applications, 09(03): 766-777
Orlicz, W. (1961) A note on modular spaces I. Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques (BAPMAM), 9: 157-162
Raina, R.K. (2005) On generalized Wright's hypergeometric functions and fractional calculus operators. East Asian Mathematics Journal, 21(2): 191-203
Rashid, S., Noor, M.A., Noor, K.I. (2019) Fractional Exponentially m-Cconvex Functions and Inequalities. International Journal of Analysis and Applications, 17(3): 464-478
Rashid, S., Noor, M.A., Noor, K.I., Akdemir, A.O. (2019) Some new generalizations for Exponentially s-convex functions and inequalities via fractional operators. Fractal and Fractional, 3(2): 1-16
Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N. (2013) Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling, 57(9-10): 2403-2407
Turhan, S., İşcan, İ., Kunt, M. (2018) Hermite-Hadamard type inequalities for n-times differentiable convex functions via Riemann-Liouville fractional integrals. Filomat, 32(16): 5611-5622
Vivas-Cortez, M.J., Hernández, H.J.E. (2018) On (m, h1, h2)-convex stochastic processes using fractional integral operator. Applied Mathematics & Information Sciences, 12(1): 45-53
Yaldiz, H., Sarikaya, M.Z. On the Hermite -Hadamard type inequalities for fractional integral operator. https://www.researchgate.net/publication/309824275
 

O članku

jezik rada: engleski
vrsta rada: članak
DOI: 10.5937/MatMor2001045V
objavljen u SCIndeksu: 21.05.2020.
Creative Commons License 4.0