Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 1 od 1  
2022, vol. 26, br. 1, str. 27-36
Certain integral representations involving hypergeometric functions in two variables
(naslov ne postoji na srpskom)
aAden University, Department of Mathematics, Aden, Yemen
bPoornima College Engineering, Department of Mathematics, Jaipur, India
cAnand International College of Engineering, Department of Mathematics, Jaipur, India + Ajman University, Nonlinear Dynamics Research Center, Ajman UAE + Netaji Subhas University of Technology, New Delhi, India + Harish-Chandra Research Institute (HRI), Allahabad, India
dUniversity of Jordan, Faculty of Science, Department of Mathematics, Amman, Jordan

e-adresajihadalsaqqaf@gmail.com, shilpijain1310@gmail.com, goyal.praveen2011@gmail.com, s.momani@ju.edu.jo
Projekat:
Shilpi Jain very thankful to SERB (project number: MTR/2017/000194) for providing necessary facility and Praveen Agarwal thanks the SERB (project TAR/2018/000001),DST (projects DST/INT/DAAD/P-21/2019 and INT/RUS/RFBR/308), and NBHM (DAE) (project 02011/12/2020 NBHM (R.P)/RD II/7867).

Ključne reči: Beta function; Horn double functions; Appell functions; Eulerian integrals
Sažetak
(ne postoji na srpskom)
Various integral representations of hypergeometric functions have been introduced and investigated due to their important applications in divers fields. In this article, we define some new Euler-type integral representations for the Horn's functions of two variables G1, G2, G3 and H1.
Reference
Novododat članak: provera, normiranje i linkovanje referenci u toku.
P. Appell, Sur les fonctions hypergéeométriques de deux variables, Journal de Mathématiques Pures et Appliquées, 8 (3) (1882), 173-216.
G. Dattoli, P.E. Ricci, C. Cesarano, L. Vázquez, Fractional derivatives: integral representations and generalized polynomials, Journal of Concrete and Applicable Mathematics, 2 (2004), 59-66.
M.G. Bin-Saad, J.A Younis, Certain quadruple hypergeometric series and their integral representations, Applications and Applied Mathematics, 14 (2019), 1085-1098.
M.G. Bin-Saad, J.A Younis, Certain integrals associated with hypergeometric functions of four variables, Earthline Journal of Mathematical Sciences, 2 (2019), 325-341.
M.G. Bin-Saad, J.A Younis, Certain integral representations of some quadruple hypergeometric series, Palestine Journal of Mathematics, 9 (2020), 132-141.
M.G. Bin-Saad, J.A. Younis, Some integrals connected with a new quadruple hypergeometric series, Universal Journal of Mathematics and Applications, 3 (2020), 19-27.
C. Cesarano, Integral representations and new generating functions of Chebyshev polynomials, Hacettepe Journal of Mathematics and Statistics, 44 (2015), 535-546.
C. Cesarano, A note on bi-orthogonal polynomials and functions, Fluids, 5 (2020), 105, 14 pages.
J. Choi, A. Hasanov, H.M. Srivastava, M. Turaev, Integral representations for Srivastavas triple hypergeometric functions, Taiwanese Journal of Mathematics, 15 (2011), 2751-2762.
A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
H. Exton, Multiple Hypergeometric Functions and Applications, Halsted Press, New York, London, Sydney and Toronto, 1976.
A. Hasanov, M.G. Bin Saad, A. Ryskan, Some properties of Horn type second order double hypergeometric series, Bulletin KRASEC. Physical and Mathematical Sciences, 21 (2018), 32-47.
J. Horn, Ueber die Convergenz der Hypergeometrische Reihen Zweier und Dreier Veränderlichen, Mathematische Annalen, 34 (1889), 544-600.
S. Jun, I. Kim, A.K. Rathie, On a new class of Eulerians type integrals involving generalized hypergeometric functions, Australian Journal of Mathematical Analysis and Applications, 16 (1) (2019), Article ID: 10.
E.D. Rainville, Special Functions, Macmillan Company, New York, 1960.
H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Lt1., Chichester, 1984.
J.A. Younis, M.G. Bin-Saad, Integral representations involving new hypergeometric functions of four variables, Journal of Fractional Calculus and Applications, 10 (2019), 77-91.
J.A. Younis, M.G. Bin-Saad, Integral representations and operational relations involving some quadruple hypergeometric functions, Journal of Fractional Calculus and Applications, 11 (2020), 62-74.
J.A. Younis, K.S. Nisar, Several Euler-type integrals involving Extons quadruple hypergeometric series, Journal of Mathematics and Computer Science, 21 (2020), 286-295.
H.M. Srivastava, P. Agarwal, S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Applied Mathematics and Computation, 247 (2014), 348-352.
M.J. Luo, G.V. Milovanovic, P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Applied Mathematics and Computation, 248 (2014), 631-651.
P. Agarwal, J. Choi, S. Jain, Extended hypergeometric functions of two and three variables, Communications of the Korean Mathematical Society, 30 (4) (2015), 403-414.
A. Çetinkaya, I.O. Kıymaz, P. Agarwal, R. Agarwal, A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators, Advances in Difference Equations, 2018 (1) (2018), 1-11.
P. Agarwal, F. Qi, M. Chand, S. Jain, Certain integrals involving the generalized hypergeometric function and the Laguerre polynomials, Journal of Computational and Applied Mathematics, 313 (2017), 307-317.
R.P. Agarwal, M.J. Luo, P. Agarwal, On the extended Appell-Lauricella hypergeometric functions and their applications, Filomat 31 (12) (2017), 3693-3713.
P. Agarwal, F. Qi, M. Chand, G. Singh, Some fractional differential equations involving generalized hypergeometric functions, Journal of Applied Analysis 25 (1) (2019), 37-44.
R. Goyal, S. Momani, P. Agarwal, M.T. Rassias, An Extension of Beta Function by Using Wiman's Function, Axioms 10 (3) (2021), Article ID: 187.
S. Jain, R.P. Agarwal, P. Agarwal, P. Singh, Certain Unified Integrals Involving a Multivariate Mittag-Leffler Function, Axioms 10 (2) (2021), Article ID: 81.
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor2201027Y
primljen: 08.02.2021.
revidiran: 04.05.2021.
prihvaćen: 03.09.2021.
objavljen onlajn: 02.11.2021.
objavljen u SCIndeksu: 25.06.2022.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka