Kragujevac Journal of Science
kako citirati ovaj članak
podeli ovaj članak


  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:5


članak: 1 od 1  
2020, br. 42, str. 19-28
Numerical investigation of the plasma formation in air generated by 355 nm Nd:YAG laser pulses
(naslov ne postoji na srpskom)
aUniverzitet u Kragujevcu, Prirodno-matematički fakultet
bUniversity of Patras, Department of Electrical & Computer Engineering, Wire Communications Laboratory, Audio & Acoustic Technology Group, Rio, Greece
cUniversity of Kragujevac, Technical College of Applied Studies, Kragujevac

Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Kragujevcu, Prirodno-matematički fakultet) (MPNTR - 451-03-68/2020-14/200122)
This work was supported by the COST Action CA17126: Towards understanding and modelling intense electronic excitation

Ključne reči: laser-induced breakdown; numerical calculation; free electron density
(ne postoji na srpskom)
In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser-induced breakdown. In this regard, we adopted a simple theoretical formulation relying on the numerical solution of a rate equation that describes the growth of the electron density due to the joined effect of multiphoton and cascade ionization processes. The rate equation also includes the effect of electron loss due to diffusion, attachment and recombination processes. The analysis considered atmospheric air irradiated by a Nd:YAG laser radiation at a wavelength of 355 nm with 5 ns pulse duration full-width half-maximum (FWHM).
Burrage, K. (1978) A special family of Runge-Kutta methods for solving stiff differential equations. BIT Numerical Mathematics, 18 (1): 22-41
Cheng, J., Chen, M., Kafka, K., Austin, D., Wang, J., Xiao, Y., Chowdhury, E. (2016) Determination of ultra-short laser induced damage threshold of KH2PO4 crystal: Numerical calculation and experimental verification. AIP Advances, 6(3): 035221-035221
Doucet, F.R., Lithgow, G., Kosierb, R., Bouchard, P., Sabsabi, M. (2011) Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics. Journal of Analytical Atomic Spectrometry, 26(3): 536-541
Eliezer,, Sharma, A., Slipchenko, M.N., Shneider, M.N., Wang, X., Rahman, K.A., Shashurin, A. (2018) Counting the electrons in a multiphoton ionization by elastic scattering of microwaves. Scientific reports, 8(1): 1-10
Eliezer, S., Mima, K. (2008) Applications of laser-plasma interactions. CRC press
Ettoumi, W., Béjot, P., Petit, Y., Loriot, V., Hertz, E., Faucher, O., Lavorel, B., Kasparian, J., Wolf, J.P. (2010) Spectral dependence of purely-Kerr-driven filamentation in air and argon. Physical Review A, 82(3): 33826-33826
Ferris, C. (2014) Theoretical modeling of laser-induced absorption phenomena in optical materials. PhD thesis: pp.19-20
Gaabour, L.H., Gamal, Y.E.E.D., Abdellatif, G. (2012) Numerical Investigation of the Plasma Formation in Distilled Water by Nd-YAG Laser Pulses of Different Duration. Journal of Modern Physics, 03(10): 1683-1691
Gocić, S.R., Marković, V.L., Stamenković, S.N. (2009) Determination o f correlation coefficient of the statistical and formative time delay in nitrogen. Journal of Physics D: Applied Physics, 42(21): 212001-212001
Jameson, A. (2017) Evaluation of Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations. Journal of Scientific Computing, 73(2-3): 819-852
Ji, L., Yan, T., Ma, R. (2019) Ionization behavior and dynamics of picosecond laser filamentation in sapphire. Opto-Electronic Advances, 2(08): 190003-190003
Keldysh, L.V. (1965) Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 20, 1307-1316
Kennedy, P.K. (1995) A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Theory. IEEE Journal of Quantum Electronics, I, 31(12): 2241-2249
Koopman, D.W., Saum, K.A. (1973) Formation and guiding of high-velocity electrical streamers by laser-induced ionization. Journal of Applied Physics, 44(12): 5328-5336
Kunhardt, E.E., Luessen, L.H. (2013) Electrical Breakdown and Discharges in Gases: Fundamental Processes and Breakdown. Springer Science & Business Media, Part A
Maeder, R.E. (1991) Programming in mathematica. Addison-Wesley Longman Publishing Co, 129-129
March, V., Arrayás, M., Trueba, J.L., Montanyà, J., Romero, D., Solà, G., Aranguren, D. (2009) Features of electrical discharges in air triggered by laser. Journal of Electrostatics, 67(2-3): 301-306
Morgan, C.G. (1975) Laser-induced breakdown of gases. Reports on Progress in Physics, 38(5): 621-665
Perelomov, M., Popov, V.S., Terent'ev, M.V. (1966) Ionization of atoms in an alternating electric field. Soviet Physics JETP, 23(5); 924-934
Shen, Y.R. (1984) The principles of nonlinear optics. New York: Wiley-Interscience, pp. 575
Singh, J.P., Thakur, S.N., ur. (2007) Laser induced breakdown spectroscopy. Elsevier Science
Talebpour, A., Yang, J., Chin, S.L. (1999) Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse. Optics Communications, 163(1-3): 29-32
Tambay, R., Thareja, R.K. (1991) Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 mm. Journal of Applied Physics, 70(5): 2890-2892
Thiyagarajan, M., Scharer, J. (2008) Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air. Journal of Applied Physics, 104(1): 013303-013303
Thiyagarajan, M., Thompson, S. (2012) Optical breakdown threshold investigation of 1064 nm laser induced air plasmas. Journal of Applied Physics, 111(7): 073302-073302
Tong, X.M., Zhao, Z.X., Lin, C.D. (2002) Theory of molecular tunneling ionization. Physical Review A, 66(3): 33402-33402
Tosa, V., Takahashi, E., Nabekawa, Y., Idorikawa, M.K. (2003) Generation dynamics of high order harmonics in a selfguided beam. u: Conference on Lasers and Electro-Optics, Optical Society of America: CMS2
Tozer, B.A. (1965) Theory of the Ionization of Gases by Laser Beams. Physical Review, 137(6A): A1665-A1667
Tzortzakis, S., Prade, B., Franco, M., Mysyrowicz, A., Hüller, S., Mora, P. (2001) Femtosecond laser-guided electric discharge in air. Physical Review E, 64(5): 57401-57401
Wolfram, S. (1999) The MATHEMATICA® book. Cambridge university press, version 4
Yudin, G.L., Ivanov, M.Yu. (2001) Nonadiabatic tunnel ionization: Looking inside a laser cycle. Physical Review A, 64(1): 13409-13409
Zaghloul, M.R. (2018) Efficient Multi-Accuracy Computations of Complex Functions with Complex Arguments. arXivpreprint arXiv:1806.01656
Zeld'ovich, Y.B., Razier, Y.P., eds. (1967) Physics of shock waves and high-temperature hydrodynamics phenomena. New York-San Diego: Academic Press, Vol. 2

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/KgJSci2042019D
objavljen u SCIndeksu: 26.07.2020.
Creative Commons License 4.0