- citati u SCIndeksu: [1]
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:7
- preuzimanja u poslednjih 30 dana:2
|
|
|
2018, vol. 46, br. 4, str. 475-488
|
|
Proučavanje simulacije sagorevanja u komori za sagorevanje pri konstantnoj masi i promenljivoj zapremini smeše goriva i vazduha
Simulation studies of combustion in a constant-mass variable-volume combustion chamber
aNigerian Defence Academy, Department of Mechanical Engineering, Kaduna, Nigeria bTexas Southern University, Department of Industrial Technologies, Houston, Texas, USA
e-adresa: lanetor@uh.edu
Sažetak
Kod za numeričku simulaciju koristili smo za sistematsko proučavanje efekata jednakih vrednosti odnosa u smeši gorivo-vazduh u opsegu 0,7 ≤ φ ≤ 1,4 i stepena kompresije rc na ključne radne parametre: pritisak, brzinu promene pritiska, '/dt' temperaturu gašenja plamena, brzinu toka sagorevanja, efikasnost sagorevanja ηb, produkte sagorevanja, masene frakcije goriva i gubitak toplote, kod simulacije rada benzinskog motora V8 (5734 l). Podaci pokazuju da postoji vrlo dobra kvalitativna korelacija između karakteristika brzine sagorevanja smeše i sredstva za oksidisanje. Rezultati takođe pokazuju da se sa približavanjem gašenja plamena brzina potrošnje goriva Rfu ubrzano povećava sa temperaturom smeše, pri čemu jeφ u rasponu od 0,7 ≤ φ ≤ 1,4. Prosečna brzina sagorevanja (po sekundi) fbr (1/s) varira u opsegu 11,2 ≤ fbr ≤137,0 kod smeše, φ je u opsegu 0,7 ≤ φ ≤ 1,4. Dalje, rezultati pokazuju da je najbrža potrošnja goriva φ = 1,4 u vremenskom intervalu t tako da je 0,0 ≤ t ≤ 0, 61 ms, dok je najsporija potrošnja φ - 0,7 a odgovarajući vremenski interval je 0,0 ≤t≤3,98 ms. Osim toga, prema podacima za sve odnose gorivo-vazduh u jednakim količinama, za φ u opsegu 0,7 ≤ φ ≤ 1,4, brzina potrošnje goriva monotono raste posle početnog perioda odlaganja paljenja. Utvrđeno je da se efikasnost sagorevanja ηb kod motora koji smo proučavali kretala u opsegu 94,1% ≤ ηb ≤ 94,4% za sve smeše sa relativno malim procentom goriva, tj. za φ <1,0; odgovarajuće vrednosti za efikasnost sagorevanja ηb za sve smeše sa većim procentom goriva kretale su se u intervalu 93,8% ≤ ηb ≤ 94,1%. Ostali rezultati su prikazani u zaključcima ovoga rada.
Abstract
A numerical simulation code was used to conduct a systematic study of the effects of fuel-air equivalence ratios in the range 0.7 ≤ φ ≤ 1.4 and compression ratio, rc = 8.0 on key operating parameters, such as pressure, rate of change of pressure, '/dt' flame extinction temperature, burn rate frequency, combustion efficiency, ηb, source term, mass burn fractions and heat loss in a simulated 5.734 liter, V8 spark-ignition engine. The data shows that the burn rate characteristics of the fuel and oxidizer are qualitatively perfectly correlated. The results also show that as flame extinction/flameout is approached, the fuel consumption rate, Rfu increases rapidly with temperature for fuel-air equivalence ratios, φ in the range 0.7 ≤ φ ≤ 1.4. The average burn rate frequency (per second), fbr(1/s) varies from 11.2 ≤ fbr ≤ 137.0 for fuel-air equivalence ratios, φ in the range 0.7 ≤ φ ≤ 1.4 The results further show that the fastest fuel consumption rate was for fuel-air equivalence ratio, φ = 1.4 in the time interval, t such that 0.0 ≤ t ≤ 0.61 ms while the slowest corresponds to φ - 0.7 and the corresponding time interval was 0.0 ≤ t ≤ 3.98 ms. Moreover, the data shows that for fuel-air equivalence ratios, φ in the range 0.7 ≤ φ ≤ 1.4 the fuel consumption rate increases monotonically after the initial ignition delay period. The combustion efficiency, ηb of the engine under investigation were found to be in the range of 94.1% ≤ ηb ≤ 94.4% for lean mixtures, that is, for φ < 1.0;the corresponding values of combustion efficiency, ηb for fuel-rich mixtures were in the interval 93.8% ≤ ηb ≤ 94.1%. The other results from this study are summarized in the conclusion.
|
|
|
|
Reference
|
|
|
Alireza, M., Timothy, J., Mark, P., John, E. (2017) Prediction of air-fuel ratio control of a large-bore natural gas engine using computational fluid dynamic modeling of reed valve dynamics. International Journal of Engine Research, 1-9; DOI: 10.1177/1468087416686224
|
|
|
Bolla, M., Chishty, M.A., Hawkes, E.R., Kook, S. (2017) Modeling combustion under engine combustion network Spray A conditions with multiple injections using the transported probability density function method. International Journal of Engine Research, 18(1-2): 6-14
|
|
4
|
Borman, G.L., Ragland, K.W. (1998) Combustion engineering. New York, itd: McGraw-Hill
|
|
|
Date, A.W. (2011) Analytic combustion: With thermo-dynamics, chemical kinetics, and mass transfer. New York, USA, 2
|
|
|
Hamann, H., i dr. (2016) Efficiency scaling method of gasoline engines for different geometries and the application in hybrid vehicle simulation. International J of Engine Research, 1-20; DOI: 10.1177/1468087416667130
|
|
8
|
Heywood, J.B. (1998) Internal combustion engine fundamentals. New York: McGraw-Hill
|
|
4
|
Kays, W.M., Crawford, M.E. (1993) Convective heat and mass transfer. New York: McGraw-Hill, Inc
|
|
|
Kim, J., Bae, C., Kim, G. (2012) The Effects of Spark Timing and Equivalence Ratio on Spark-Ignition Linear Engine Operation with Liquefied Petroleum Gas. u: SAE International, 400 Commonwealth Drive, Warrendale, PA, United States: SAE International
|
|
|
Kodavasal, J., Keum, S., Babajimopoulos, A. (2011) An extended multi-zone combustion model for PCI simulation. Combustion Theory and Modelling, 15(6): 893-910
|
|
|
Lucchini, T., Della, T.A., d'Errico Gianluca,, Onorati, A., Maes, N., Somers, L.M., Hardy, G. (2017) A comprehensive methodology for computational fluid dynamics combustion modeling of industrial diesel engines. International Journal of Engine Research, 18(1-2): 26-38
|
|
|
Ma, P.C., Greene, M., Sick, V., Ihme, M. (2017) Non-equilibrium wall-modeling for internal combustion engine simulations with wall heat transfer. International Journal of Engine Research, 18(1-2): 15-25
|
|
|
Manente, V., Johansson, B., Cannella, W. (2011) Gasoline partially premixed combustion, the future of internal combustion engines?. International Journal of Engine Research, 12(3): 194-208
|
|
|
Micklow, G.J., Owens, B., Russell, M. (2001) Cycle analysis for fuel-inducted internal combustion engine configurations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 215(1): 115-125
|
|
|
Pickett, L.M., Caton, J.A., Musculus, M.P.B., Lutz, A.E. (2006) Evaluation of the equivalence ratio-temperature region of diesel soot precursor formation using a two-stage Lagrangian model. International Journal of Engine Research, 7(5): 349-370
|
|
|
Prasad, S.S., Robert, J.M., Dennis, N.A., Claus, B., Jason, B.M. (2016) A thermodynamic model for homogeneous charge compression ignition combustion with recompression valve events and direct injection: Part I: Adiabatic core ignition model. International Journal of Engine Research, 1-20; DOI: 10.1177/1468087416664635
|
|
|
Raghuram, P., Ramkumar, P., Suhan, S. (2012) Estimation of Air-Fuel ratio (AFR) in a Spark-Ignition (SI) engine from cylinder pressure measurements. IJRRAS, 13(3); 707-715
|
|
|
Syed, Y., Venkateswarlu, K., Sastry, G.R.K. (2012) Effect of Compression Ratio and Equivalence Ratio on the Emission Characteristics of a Hydrogen-Ethanol Fuelled Spark Ignition Engine. International Journal of Advanced Science and Technology, 40
|
|
|
Torres, D.J., Trujillo, M.F. (2006) KIVA-4: An unstructured ALE code for compressible gas flow with sprays. Journal of Computational Physics, 219(2): 943-975
|
|
2
|
Westbrook, C.K., Dryer, F.L. (1981) Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 27(1-2): 31-43
|
|
|
|
|