- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:3
- preuzimanja u poslednjih 30 dana:3
|
|
2019, vol. 47, br. 2, str. 379-386
|
Primena algoritama segmentacije mreže kao strategija za fabrikaciju - generisanje uzoraka na osnovu mehanizma reakcije-difuzije
Employing mesh segmentation algorithms as fabrication strategies: Pattern generation based on reaction-diffusion mechanism
aESARQ, UIC, Barcelona, Spain bESARQ, UIC Barcelona, Institute For Biodigital Architecture and Genetics, Spain cUniversity of Southampton, UK + Electronics and Computer Sciences, Spain
e-adresa: estevez@uic.es
Ključne reči: Fabrication methods; Stripes; Skin pattern; Morphogenesis; Shell structure
Sažetak
Ovaj rad ispituje kako evolucija procesa arhitektonskog generativnog projektovanja ima za cilj da primeni slične fizičke i geometrijske principe bioloških procesa koji se odvijaju tokom razvoja i da ih prevede u proces proizvodnje. Analogno sa mehanizmom reakcije-difuzije za predviđanje biološkog obrasca, logika pruge koristi se kao konstrukcioni sistem i ispituje se njeno strukturalno ponašanje. I procesi relaksacije mreže i reprezentacije ponderisanih mrežnih grafova koriste se kao projektni alati za konstrukciju oplate sa minimalnom debljinom ljuske sa razgranatom topologijom. Na kraju se radni proces dizajna proširuje kako bi se uključili i procesi kolaborativne izrade i da se upravlja dizajnom na osnovu intuicije, poznavanja alata za izradu, svojstava materijala, proizvodnih simulacija i logike sastavljanja. Ovakav pristup bi mogao dovesti do optimalne upotrebe materijala i vremena stroja i olakšati proces montaže fizičkog objekta koji integriše celi proces u njegov oblik. Rezultati su korišćeni za izradu prototipa, upotrebom tri različita materijala i digitalne metode izrade, kako bi se ispitala stabilnost i mehanička povezanost uzimanjem u obzir tolerancija. U radu se tvrdi da biološki obrasci i segmentacija u proizvodnji stvaraju novo polje interdisciplinarnih istraživanja i arhitektonskih aplikacija.
Abstract
This paper examines how the evolution of architectural generative design processes aim to apply similar physical and geometrical principles of biological processes taking place during development and to translate them to fabrication processes. In analogy to the reaction-diffusion mechanism for biological pattern prediction, the logic of stripe is used as construction system and examined for its structural behaviour. Both, mesh relaxation processes and weighted mesh graphs representations are employed as design tools for the construction of a minimal thin shell structural skin with branching topologies. Eventually the design workflow is extended to engage also collaborative fabrication processes and to steer the design based on intuition, knowledge of the fabrication tools, properties of the materials, manufacturing simulations and logic of assemble. This approach could lead to the optimization of material usage and machine time and facilitate the assembly process of a physical object which integrates the whole process into its form. The outcomes have been used to fabricate a prototype, using three different materials and digital fabrication methods, to examine the stability and the mechanical connectivity by taking in count the tolerances. The paper argues that biological skin patterns and segmentation in fabrication open a new field of interdisciplinary investigation and architectural applications.
|
|
|
Reference
|
|
*** Polypropylene (PP) copolymer. Makeitfrom, https://www.makeitfrom.com/material-properties/PP-PP-Copolymer. Accessed, March 2018
|
|
*** Typical poisson's ratios of polymers at room temperature. Polymerdatabase, Available at: http://polymerdatabase.com/polymer%20physics/Poisson%20Table.html. Accessed, March 2018
|
|
Baquero, P., i dr. (2015) Strategies for metallic vault structures. u: 33rd eCAADe Conference Proceedings, Vienna, Vol. 2, pp. 169-176
|
|
Baquero, P., Orciuoli, A., Calixto, V., Vincent, C. (2016) SIGraDi:Crowdthinking. XX Conference of the Iberoamerican Society of Digital Graphics, November 2016, Buenos Aires
|
|
Beloussov, L.V. (2012) Morphogenesis as a macroscopic self-organizing process. Biosystems, 109(3): 262-279
|
|
Block, P., i dr. (2006) As hangs the flexible line: equilibrium of masonry arches. Nexus Network Journal, 8, pp. 9-19
|
|
Block, P. (2005) Equilibrium systems: Studies in masonry structure. Department of Architecture-Massachusetts Institute of Technology, M.S. dissertation, pp 36
|
|
Camazine, S., i dr. (2003) Self-organization in biological systems. Princeton University Press, pp. 83
|
|
Dade-Robertson, M., i dr. (2017) Synthetic biological construction: Beyond 'bioinspired' in the design of new materials and fabrication systems. u: 3rd International Conference Biodigital: Architecture and Genetics, Barcelona
|
|
Doursat, R., i dr., ur. (2012) Morphogenetic enginee-ring: Toward programmable complex systems. New York: Springer
|
|
Fornes, M. Marc Fornes and THEVERYMANY, https://theverymany.com/ Accessed Feb. 2018
|
|
Giannopoulou, E., Baquero, B., Warang, A., Orciuoli, A., Estévez, T.A., Brun-Usan, M. (2018) Biological pattern based on reaction-diffusion mechanism employed as fabrication strategy for a shell structure. u: 3rd World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium, Prague
|
|
Haken, H. (1982) Introductory Remarks. u: Haken, Hermann; Haken, Hermann [ur.] Springer Series in Synergetics, Berlin, Heidelberg: Springer Science and Business Media LLC, : 2-4
|
|
How, M.J., Zanker, J.M. (2014) Motion camouflage induced by zebra stripes. Zoology, 117(3): 163-170
|
|
Jeong, D., Li, Y., Choi, Y., Yoo, M., Kang, D., Park, J., Choi, J., Kim, J. (2017) Numerical simulation of the zebra pattern formation on a three-dimensional model. Physica A: Statistical Mechanics and its Applications, 475: 106-116
|
|
Kondo, S., Miura, T. (2010) Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation. Science, 329(5999): 1616-1620
|
|
Kondo, S. (2002) The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes to Cells, 7(6): 535-541
|
|
Michalatos, P. (2014) Millipede. Grasshopper. http://www.grasshopper3d.com/group/millipede. Accessed, March 2018
|
|
Nejur, A., Steinfeld, K. (2017) Ivy: Progress in developing practical applications for a weighted-mesh representation for use in generative architectural design. u: 37th ACADIA, MIT
|
|
Nejur, A., Steinfeld, K. (2016) Ivy: Bringing a weighted-mesh representation to bear on generative architectural design applications. u: 36th ACADIA, University of Michigan Taubman College, pp. 140-151
|
|
Orciuoli, A., Giannopoulou, E., Baquero, P. (2017) Experimental methods on unifying computational and manufactural workflows. e-Revista LOGO, 6(3): 26-36
|
|
Pearson, J. E. (1993) Complex Patterns in a Simple System. Science, 261(5118): 189-192
|
|
Piker, D. (2013) Kangaroo: Form Finding with Computational Physics. Architectural Design, 83(2): 136-137
|
|
Pjević, M.D., Mladenović, G.M., Tanović, L.M., Puzović, R.M. (2018) Contemporary approach to the design of circular form tools for complex-geometry part manufacture. FME Transactions, vol. 46, br. 1, str. 80-85
|
|
Spuybroek, L. (2006) The Sympathy of things: Ruskin and the ecology of design. Bloomsbury, pp. 100
|
23
|
Stevanović, I., Rašuo, B. (2017) Development of a miniature robot based on experience inspired by nature. FME Transactions, vol. 45, br. 1, str. 189-197
|
|
Synbio Construction Synthetic morphologies. http://www.synbio.construction/n-synthetic-morphologies, April 2018
|
|
Tam, K.M.M., Mueller, C. (2015) Stress line generation for structurally performative architectural design. u: Combs L., Perry C. [ur.] The 35th ACADIA, Cincinnati, OH, Proceedings of
|
|
Tenu, V. Architecture, design, art. http://www.vladtenu.com/ Accessed April 2018
|
|
Turing, A. (1952) The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641): 37-72
|
|
Wolfram, S. (2002) A new kind of science. Champaign, IL: Wolfram Media, pp. 1004
|
|
|
|