Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:12
  • preuzimanja u poslednjih 30 dana:11

Sadržaj

članak: 1 od 1  
2019, vol. 47, br. 2, str. 379-386
Primena algoritama segmentacije mreže kao strategija za fabrikaciju - generisanje uzoraka na osnovu mehanizma reakcije-difuzije
aESARQ, UIC, Barcelona, Spain
bESARQ, UIC Barcelona, Institute For Biodigital Architecture and Genetics, Spain
cUniversity of Southampton, UK + Electronics and Computer Sciences, Spain

e-adresaestevez@uic.es
Ključne reči: Fabrication methods; Stripes; Skin pattern; Morphogenesis; Shell structure
Sažetak
Ovaj rad ispituje kako evolucija procesa arhitektonskog generativnog projektovanja ima za cilj da primeni slične fizičke i geometrijske principe bioloških procesa koji se odvijaju tokom razvoja i da ih prevede u proces proizvodnje. Analogno sa mehanizmom reakcije-difuzije za predviđanje biološkog obrasca, logika pruge koristi se kao konstrukcioni sistem i ispituje se njeno strukturalno ponašanje. I procesi relaksacije mreže i reprezentacije ponderisanih mrežnih grafova koriste se kao projektni alati za konstrukciju oplate sa minimalnom debljinom ljuske sa razgranatom topologijom. Na kraju se radni proces dizajna proširuje kako bi se uključili i procesi kolaborativne izrade i da se upravlja dizajnom na osnovu intuicije, poznavanja alata za izradu, svojstava materijala, proizvodnih simulacija i logike sastavljanja. Ovakav pristup bi mogao dovesti do optimalne upotrebe materijala i vremena stroja i olakšati proces montaže fizičkog objekta koji integriše celi proces u njegov oblik. Rezultati su korišćeni za izradu prototipa, upotrebom tri različita materijala i digitalne metode izrade, kako bi se ispitala stabilnost i mehanička povezanost uzimanjem u obzir tolerancija. U radu se tvrdi da biološki obrasci i segmentacija u proizvodnji stvaraju novo polje interdisciplinarnih istraživanja i arhitektonskih aplikacija.
Reference
*** Polypropylene (PP) copolymer. Makeitfrom, https://www.makeitfrom.com/material-properties/PP-PP-Copolymer. Accessed, March 2018
*** Typical poisson's ratios of polymers at room temperature. Polymerdatabase, Available at: http://polymerdatabase.com/polymer%20physics/Poisson%20Table.html. Accessed, March 2018
Baquero, P., Orciuoli, A., Calixto, V., Vincent, C. (2016) SIGraDi:Crowdthinking. XX Conference of the Iberoamerican Society of Digital Graphics, November 2016, Buenos Aires
Baquero, P., i dr. (2015) Strategies for metallic vault structures. u: 33rd eCAADe Conference Proceedings, Vienna, Vol. 2, pp. 169-176
Beloussov, L.V. (2012) Morphogenesis as a macroscopic self-organizing process. Biosystems, 109(3): 262-279
Block, P., i dr. (2006) As hangs the flexible line: equilibrium of masonry arches. Nexus Network Journal, 8, pp. 9-19
Block, P. (2005) Equilibrium systems: Studies in masonry structure. Department of Architecture-Massachusetts Institute of Technology, M.S. dissertation, pp 36
Camazine, S., i dr. (2003) Self-organization in biological systems. Princeton University Press, pp. 83
Dade-Robertson, M., i dr. (2017) Synthetic biological construction: Beyond 'bioinspired' in the design of new materials and fabrication systems. u: 3rd International Conference Biodigital: Architecture and Genetics, Barcelona
Doursat, R., i dr., ur. (2012) Morphogenetic enginee-ring: Toward programmable complex systems. New York: Springer
Fornes, M. Marc Fornes and THEVERYMANY, https://theverymany.com/ Accessed Feb. 2018
Giannopoulou, E., Baquero, B., Warang, A., Orciuoli, A., Estévez, T.A., Brun-Usan, M. (2018) Biological pattern based on reaction-diffusion mechanism employed as fabrication strategy for a shell structure. u: 3rd World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium, Prague
Haken, H. (1982) Introductory Remarks. u: Haken, Hermann; Haken, Hermann [ur.] Springer Series in Synergetics, Berlin, Heidelberg: Springer Science and Business Media LLC, : 2-4
How, M.J., Zanker, J.M. (2014) Motion camouflage induced by zebra stripes. Zoology, 117(3): 163-170
Jeong, D., Li, Y., Choi, Y., Yoo, M., Kang, D., Park, J., Choi, J., Kim, J. (2017) Numerical simulation of the zebra pattern formation on a three-dimensional model. Physica A: Statistical Mechanics and its Applications, 475: 106-116
Kondo, S., Miura, T. (2010) Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation. Science, 329(5999): 1616-1620
Kondo, S. (2002) The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes to Cells, 7(6): 535-541
Michalatos, P. (2014) Millipede. Grasshopper. http://www.grasshopper3d.com/group/millipede. Accessed, March 2018
Nejur, A., Steinfeld, K. (2017) Ivy: Progress in developing practical applications for a weighted-mesh representation for use in generative architectural design. u: 37th ACADIA, MIT
Nejur, A., Steinfeld, K. (2016) Ivy: Bringing a weighted-mesh representation to bear on generative architectural design applications. u: 36th ACADIA, University of Michigan Taubman College, pp. 140-151
Orciuoli, A., Giannopoulou, E., Baquero, P. (2017) Experimental methods on unifying computational and manufactural workflows. e-Revista LOGO, 6(3): 26-36
Pearson, J. E. (1993) Complex Patterns in a Simple System. Science, 261(5118): 189-192
Piker, D. (2013) Kangaroo: Form Finding with Computational Physics. Architectural Design, 83(2): 136-137
Pjević, M.D., Mladenović, G.M., Tanović, L.M., Puzović, R.M. (2018) Contemporary approach to the design of circular form tools for complex-geometry part manufacture. FME Transactions, vol. 46, br. 1, str. 80-85
Spuybroek, L. (2006) The Sympathy of things: Ruskin and the ecology of design. Bloomsbury, pp. 100
Stevanović, I., Rašuo, B. (2017) Development of a miniature robot based on experience inspired by nature. FME Transactions, vol. 45, br. 1, str. 189-197
Synbio Construction Synthetic morphologies. http://www.synbio.construction/n-synthetic-morphologies, April 2018
Tam, K.M.M., Mueller, C. (2015) Stress line generation for structurally performative architectural design. u: Combs L., Perry C. [ur.] The 35th ACADIA, Cincinnati, OH, Proceedings of
Tenu, V. Architecture, design, art. http://www.vladtenu.com/ Accessed April 2018
Turing, A. (1952) The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641): 37-72
Wolfram, S. (2002) A new kind of science. Champaign, IL: Wolfram Media, pp. 1004
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet1902379G
objavljen u SCIndeksu: 18.04.2019.
Creative Commons License 4.0