Metrika

  • citati u SCIndeksu: [2]
  • citati u CrossRef-u:[6]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:36
  • preuzimanja u poslednjih 30 dana:8

Sadržaj

članak: 1 od 1  
2019, vol. 47, br. 4, str. 663-674
Šta su Sajber-Fizički Sistemi (SFS) - "spektrum" definicija i modeli
aUniversity of Minho, Department of Production and Systems Engineering, Portugal
bPolytechnic Institute of Cávado and Ave, School of Technology, Barcelos, Portugal + Algoritmi Research Centre, Guimarães, Portugal
cUniversity of Minho, Algoritmi Research Centre, Portugal

e-adresalufer@ipca.pt
Projekat:
This work has been supported by FCT - Fundação para a Ciência e Tecnologia, Portugal, within the Project Scope: UID/CEC/00319/2019.

Ključne reči: Industry 4.0; Cyber-Physical System; double-loop learning; CPS definitions; CPS models; CPS spectrum
Sažetak
Svaki put kada se desi relevantan predlog novog koncepta, postojeće perspektive, koncepti ili njihove osnove suočavaju se sa ovim koji se pojavio. Industrija 4.0 i sistemi kontrole proizvodnje koje Industrija 4.0 promoviše, zasnovani na Sajber-Fizičkim Sistemima (SFS), generisali su nove potencijale za binom čovek - tehnologija (oprema i njena upotreba). Nekoliko autora istražuje predviđenu i zahtevanu relaciju fizičkog i digitalnog kako bi najavili transformativne promene od interesa, gde auto-konfigurišuće i auto-adaptivne mašine i sistemi podržavaju primenu korektivnih odluka. Ovaj rad izlaže "spektrum" postojećih SFS definicija i modela i doprinosi osnovama za jedan efektivan inteligentni SFS (I-SFS), gde proces učenja sa dvostrukom povratnom spregom omogućava da se njegovi softverski algoritmi promene ili reprogramiraju. Umesto toga, ne samo auto-konfigurišuće mašine i sistemi, već i auto-konfigurišući softver.
Reference
Abelson, H., Sussman, G.J., Sussman, J. (1996) Structure and interpretation of computer programs. Comput. Math. with Appl, 33(4): 133-133, second edition
Asare, P., et al. (2012) Cyber-Physical Systems. Ptolemy Project, Online, https://ptolemy.berkeley.edu/projects/cps
Babiceanu, R.F., Seker, R. (2015) Manufacturing Cyber-Physical Systems enabled by complex event processing and big data environments: A framework for development. u: Borangiu T, Thomas A, and Trentesaux D. [ur.] Service orientation in holonic and multi-agent manufacturing, Cham: Springer International Publishing, 165-173
Babiceanu, R.F., Seker, R. (2015) Manufacturing operations, Internet of Things, and big data: Towards predictive manufacturing Systems. u: Borangiu T, Thomas A, and Trentesaux D. [ur.] Studies in computational intelligence, Cham: Springer International Publishing, 157-164
Baheti, R., Gill, H. (2011) Cyber-Physical Systems. Impact Control Technol, 12(1): 161-166
Brkić-Spasojević, V., Putnik, G., Shah, V., Castro, H., Veljković, Z. (2013) Human - computer interactions and user interfaces for remote control of manufacturing systems. FME Transactions, vol. 41, br. 3, str. 250-255
Cao, X., et al. (2016) Cyber-Physical System with virtual reality for intelligent motion recognition and training. IEEE Trans. Syst. Man, Cybern. Syst, 47(2): 1-17
Changbai, T., Hu, S. J., Chung, H., Barton, K., Piya, C., Ramani, K., Banu, M. (2017) Product personalization enabled by assembly architecture and Cyber-Physical Systems. CIRP Annals - Manuf. Technol, 66(1): 33-36
Derler, P., Lee, E.A., Vincentelli, A. S. (2012) Modeling Cyber-Physical Systems. Proceedings of the IEEE, 100(1): 13-28
Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L. (2011) Addressing modeling challenges in Cyber-Physical Systems. u: Tech. Rep No. UCB/EECS-2011-17, Electrical Engineering and Computer Sciences University of California at Berkeley, no. April, pp. 1-27
Dhawan, V., Debnath, K., Singh, I., Singh, S. (2016) Predviđanje sila tokom obrade bušenjem kompozitnih laminata primenom veštačke neuronske mreže - novi pristup. FME Transactions, vol. 44, br. 1, str. 36-42
E Incorporated (2013) Workshop report on foundations for innovation in cyber-physical systems
Ferreira, L., Putnik, G.D., Lopes, N., Garcia, W., Cruz-Cunha, M.M., Castro, H., Varela, M.L.R., Moura, J.M., Shah, V., Alves, C., Putnik, Z. (2018) Disruptive data visualization towards zero-defects diagnostics. Procedia CIRP, 67: 374-379
Frontoni, E., Loncarski, J., Pierdicca, R., Bernardini, M., Sasso, M. (2018) Cyber Physical Systems for industry 4.0: Towards real time virtual reality in smart manufacturing. u: Augmented reality, virtual reality, and computer graphics, 422-434
Glendinning, I. (2005) The Bloch sphere. u: QIA Meeting
Griffor, E.R., Greer, C., Wollman, D.A., Burns, M.J. (2017) Framework for Cyber-Physical Systems: Volume 1, overview. vol. 1
Guan, X., Yang, B., Chen, C., Dai, W., Wang, Y. (2016) A comprehensive overview of Cyber-Physical Systems: From perspective of feedback system. IEEE/CAA Journal of Automatica Sinica, 3(1): 1-14
Harikrishnan, H. (2017) A Cyber-Physical Systems approach to IoT standards. IOT for All, Online, https://www.iotforall.com/cyberphysical-systems-approach-iot
Hofmann, E., Rüsch, M. (2017) Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89: 23-34
K. Tekniska högskolan, Törngren, M., et al. (2013) Physical European roadmap & strategy CPS: Significance, challenges and opportunities. Document Version: 1.0 Document Status: Final Date: December 12, 2014 Dissemination: Public, no. 611430
Kagermann, H., Wahlster, W., Helbig, J. (2013) Recommendations for implementing the strategic initiative Industrie 4.0
Kantamara, P., et al. (2014) Single-loop vs. double-loop learning: An obstacle or a success factor for organizational. Int. J. Educ. Res, 2(7): 55-62
Khalid, C.M.L., Fathi, M.S., Mohamed, Z. (2015) Integration of Cyber-Physical Systems technology with augmented reality in the pre-construction stage. u: Proc. 2014 2nd Int. Conf. Technol. Informatics, Manag. Eng. Environ TIME-E 2014, 151-156
Kim, D.H. (2004) The link between individual and organizational learning. Sloan Manage. Rev, vol. 1
Lanza, G., Haefner, B., Kraemer, A. (2015) Optimization of selective assembly and adaptive manufacturing by means of Cyber-Physical System based matching. CIRP Annals - Manuf. Technol, 64(1): 399-402
Lee, E.A. (2008) Cyber Physical Systems: Design challenges. u: 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), 363-369
Lee, J., Bagheri, B., Kao, H.A. (2015) A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3: 18-23, no. December
Lee, S.A., A.E., Seshia (2017) Introduction to embedded systems: A Cyber-Physical Systems approach. Second Edition
Lezoche, M., Panetto, H. (2018) Cyber-Physical Systems: A new formal paradigm to model redundancy and resiliency. Enterprise Information Systems, 00(00): 1-22
Milgram, P., Kishino, F. (1994) A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst, vol. E77-D, pp. 1321-1329
Omidshafiei, S., et al. (2016) Measurable augmented reality for prototyping Cyberphysical Systems: A robotics platform to aid the hardware prototyping and performance testing of algorithms. IEEE Control Systems, 36(6): 65-87
Park, S., Park, S., Park, Y.B. (2018) An architecture framework for orchestrating context-aware it ecosystems: A case study for quantitative evaluation. Sensors (Switzerland), 18(2): 562-562
Rabi, I.I., Ramsey, N.F., Schwinger, J. (1954) Use of rotating coordinates in magnetic resonance problems. Reviews of Modern Physics, 26(2): 167-171, Apr
Rajkumar, R. R., Lee, I., Sha, L., Stankovic, J. (2010) Cyber-Physical Systems: The next computing revolution. u: Proceedings of the 47th Design Automation Conference, pp. 731-736
Sousa, S., Nunes, E., Lopes, I. (2015) Merenje i upravljanje operativnim rizikom u industrijskim procesima. FME Transactions, vol. 43, br. 4, str. 295-302
Sztipanovits, J., Karsai, G. (1997) Model-integrated computing. System, 110-111
Tan, Y., Goddard, S., Pérez, L.C. (2008) A prototype architecture for Cyber-Physical Systems. ACM SIGBED Review, 5(1): 1-2
Tomiyama, T., Moyen, F. (2018) Resilient architecture for Cyber-Physical production Systems. CIRP Annals, 67(1): 161-164
Trappey, A.J.C., Trappey, C.V., Govindarajan, U.H., Sun, J.J., Chuang, A.C. (2016) A review of technology standards and patent portfolios for enabling Cyber-Physical Systems in advanced manufacturing. IEEE Access, 4: 7356-7382
Wang, X.V., Kemény, Z., Váncza, J., Wang, L.V. (2017) Human-robot collaborative assembly in cyber-physical production: Classification framework and implementation. CIRP Annals - Manuf. Technol, 66(1): 5-8
Wittenberg, C. (2016) Human-CPS Interaction: Requirements and human-machine interaction methods for the Industry 4.0. IFAC-PapersOnLine, 49(19): 420-425
Zengqiang, J., Yang, J., Mingcheng, E., Li, Q. (2017) Distributed dynamic scheduling for Cyber-Physical production Systems based on a multi-agent system
Zhuge, H. (2012) The knowledge grid: Toward cyber-physical society. River Edge, NJ, USA: World Scientific Publishing Co, 2nd ed
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet1904663P
objavljen u SCIndeksu: 10.10.2019.
Creative Commons License 4.0