Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:2
članak: 1 od 1  
FME Transactions
2019, vol. 47, br. 4, str. 749-756
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/fmet1904749L


Prema skalabilnoj implementaciji Sajber-Fizičkih Sistema (SFS) na osnovu računarskih sistema visokih performansi
aPolytechnic Institute of Cávado and Ave, School of Technology, Barcelos, Portugal + Algoritmi Research Centre, Guimarães, Portugal
bUniversity of Minho, Algoritmi Research Centre, Guimarães, Portugal
cPolytechnic Institute of Cávado and Ave, Barcelos, Portugal + Algoritmi Research Centre, Guimarães, Portugal
dPolytechnic Institute of Cávado and Ave, Barcelos, Portugal

e-adresa: nlopes@ipca.pt

Projekat

This work has been supported by FCT - Fundação para a Ciência e Tecnologia, Portugal, within the Project Scope: UID/CEC/00319/2019.

Sažetak

Sajber-Fizičkih Sistema (SFS) uspostavlja međuzavisnost fizičkog sveta i sajber sveta. Pri razmatranju stvarnog sveta, SFS će dobiti značajne ulazne podatke iz fizičkog sveta koji zahteva pravovremeni odgovor. Bez kompjuterskih kapaciteta za obradu ulaznih podataka, SFS neće biti u mogućnosti da reaguje u kratkom roku na promene u okruženju i obezbedi odgovarajuće izlazne podatke. Sadašnji SFS nisu u stanju da reaguje u realnom vremenu na izazove prilikom razmatranja problema realnih obima. Cilj je da iskoristimo performanse računarskih sistema visokih performansi kako bismo učinili SFS sposobnim da odgovori potrebnim računarskim zahtevima kako bi bili u mogućnosti da operišu u interakciju sa fizičkim svetom. Predstavljena je studija slučaja o algoritmima programiranja proizvodnje kako bi se pokazala trenutna ograničenja u performansama računanja i ukazali na moguća rešenja da bi se ciljevi postigli.

Ključne reči

Cyber Physical System (CPS); High Performance Computing (HPC); scheduling algorithm; greedy algorithms; parallel programing; real-time CPS

Reference

Alves, C. (2017) Modelling and evaluation of 'fixed horizon', 'rolling horizon' and 'real time management' production scheduling paradigms in ubiquitous production networks under conditions of dynamic environments for economic and environmental sustainability. University of Minho, PhD Thesis
Bożejko, W. Solving the flow shop problem by parallel programming. Journal of Parallel and Distributed Computing, vol. 69
Dabah, A., Bendjoudi, A., Aitzai, A., El-Baz, D., Taboudjemat, N.N. (2018) Hybrid multi-core CPU and GPU-based B&B approaches for the blocking job shop scheduling problem. Journal of Parallel and Distributed Computing, 117: 73-86
Garey,, Johnson (1979) Computers and Intractability. W. H. Freeman
GNU Software Foundation (2019) Gprof Documentation. Online, https://sourceware.org/binutils/docs/gprof
Hager, G., Wellein, G. (2011) Introduction to high performance computing for scientists and engineers. CRC Press
Intel (2019) Intel Vtune amplifier. Online, https://software.intel.com/en-us/vtune
Kan, C., Yang, H., Kumara, S. (2009) Parallel computing and network analytics for fast Industrial Internet-of-Things (IIoT) machine information processing and condition monitoring. Journal of Manufacturing Systems, vol. 46, pp. 282-293, 2018, 470-481
Monostori,, Kádár,, Bauernhansl,, Kondoh,, Kumara,, Reinhart,, Sauer,, Schuh,, Sihn,, Ueda (2016) Cyber-Physical Systems in manufacturing. CIRP Annals - Manufacturing Technology, 65: 621-641
Mourtzis,, Vlachou,, Milas,, Xanthopoulos (2018) A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance. Journal of Manufacturing Systems, vol. 47, pp. 179-198
Pacheco, P. (2011) An introduction to parallel programming. Morgan Kaufmann
Petrović, M., Miljković, Z., Babić, B. (2013) Integration of process planning, scheduling, and mobile robot navigation based on TRIZ and multi-agent methodology. FME Transactions, vol. 41, br. 2, str. 120-129
Putnik, G., Sluga, A., Elmaraghy, H., Teti, R., Koren, Y., Tolio, T., Hon, B. (2013) Scalability in manufacturing systems design and operation: State-of-the-art and future developments road map. CIRP Annals - Manufacturing Technology, 62: 751-774
Putnik, G.D., Ferreira, L., Lopes, N., Putnik, Z. (2019) What is Cyber-Physical System: Definitions and models spectrum. FME Transactions, Vol. 47 No. 4, pp. 663-674
Sathish, T., Jayaprakash, J., Senthil, P.V., Saravanan, R. (2017) Multi period disassembly-to-order of end of life product based on scheduling to maximize the profit in reverse logistic operation. FME Transactions, vol. 45, br. 1, str. 172-180
Tomiyama,, Moyen (2018) Resilient architecture for cyber-physical production systems. CIRP Annals - Manufacturing Technology, vol. 67, 161-164
Valgrind Developers (2019) Valgrind - Callgrind. Online, http://valgrind.org/info/tools.html#callgrind
Valgrind Developers (2019) Valgrind - Callgrind. Online, http://valgrind.org/info/tools.html#callgrind
Zhong,, Xu (2015) A job-shop scheduling model with real-time feedback for physical internet-based manufacturing shopfloor. u: 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications, Beijing, China