Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 1 od 1  
2020, vol. 48, br. 2, str. 287-293
Uticaj debljine sloja na mehanizme oštećenja kompozitnih laminata pod ponavljanim opterećenjem
aTaif University, College of Engineering, Department of Mechanical Engineering, Kingdom of Saudi Arabia
bUniversity of Tabriz, Department of Mechanical Engineering, Tabriz, Iran
cYour Engineered Structures LTD, Glasgow, UK
dUniversity of Maragheh, Faculty of Engineering, Department of Mechanical Engineering, Maragheh, Iran
eUniversity of Bologna, Department of Industrial Engineering, Bologna, Italy
fUniversity of Glasgow, School of Engineering, Glasgow, UK

e-adresamohammad.fotouhi@glasgow.ac.uk
Ključne reči: glass/epoxy; laminates; low-velocity impacts; cyclic indentation; damage; delamination; critical energy level
Sažetak
Jedva vidljiva oštećenja prilikom udara (BVID) nastaju u kompozitnim laminatima koji su izloženi udarima pri malim brzinama i mogu pokazati značajan uticaj na mehaničke performanse laminata. Prethodno je analitički i eksperimentalno pokazano da se BVID dešava na kritičnom energetskom nivou i ispod ovog nivoa energije nema indukovanih oštećenja. Međutim, ponovljeni udar može izazvati BVID čak i ispod kritične brazine energije. Ovaj rad je novo istraživanje koje se bavi cikličnim ponašanjem kvazi-izotropnih staklo / epoksidnih kompozita laminiranih pod udubljenjem, što je kvazi-statička verzija udara male brzine. Poseban cilj ovog rada je da se istraži uticaj debljine sloja laminarnih kompozita na oštećenja delamiranja izazvanog pucanjem na matrici pod cikličnim kvazi statičkim opterećenjima. Ovde je istražen uticaj različitih parametara, kao što su nivo opterećenja i debljina sloja, na razvoj oštećenja. Testovi su izvedeni prema ASTM 7136 standardu. Pošto je stakleni sloj bio providan, takođe je bilo moguće vizuelno pregledati odlaganje matrice tokom testova. Laminati su podvrgnuti nivou opterećenja nižem od kritičnog nivoa opterećenja dok nije bilo dokaza o oštećenju kada su uzorci urezani samo jednom. Međutim, povećanjem broja ciklusa, u uzorcima se pojavila deformacija izazvana pucanjem pukotina. Ukratko, primećeno je da debljina sloja i nivo energije imaju značajan uticaj na intenzitet indukovanog oštećenja.
Reference
*** (2005) ASTM D7136: Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event
Abisset, E., Daghia, F., Sun, X.C., Wisnom, M.R., Hallett, S.R. (2016) Interaction of interand intralaminar damage in scaled quasi-static indentation tests: Part 1: Experiments. Composite Structures, 136: 712-726
Aoki, Y., Suemasu, H., Ishikawa, T. (2007) Damage propagation in CFRP laminates subjected to low velocity impact and static indentation. Journal of Advanced Composite Materials, 16(1): 45-61
Beaumont, P.W.R., Soutis, C., Hodzic, A., eds (2015) Structural integrity and durability of advanced composites: Innovative modelling methods and intelligent design. Cambridge, UK: Elsevier - Woodhead Publishing
Belingardi, G., Cavatorta, M.P., Paolino, D.S. (2009) Single and repeated impact tests on fiber composite laminates: Damage index vs. residual flexural properties. u: 17th International Conference of Composite Materials: ICCM17, Edinburgh, UK
Brugo, T.M., Minak, G., Zucchelli, A., Saghafi, H., Fotouhi, M. (2015) An investigation on the fatigue based delamination of woven carbon-epoxy composite laminates reinforced with polyamide nanofibers. Procedia Engineering, 109: 65-72
Cantwell, W.J., Morton, J. (1989) Geometrical effects in the low velocity impact response of CFRP. Composite Structures, 12(1): 39-59
Cantwell, W.J., Morton, J. (1991) The impact resistance of composite materials: A review. Composites, 22(5): 347-362
Caprino, G., Lopresto, V., Scarponi, C., Briotti, G. (1999) Influence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact. Composites Science and Technology, 59(15): 2279-2286
David, A.W., Donald, F.A. (1988) Residual strength of a Carbon/Epoxy composite material subjected to repeated impact. Journal of Composite Materials, 22: 749-765
Dinulović, M., Rašuo, B., Krstić, B., Bojanić, A. (2013) 3D random fiber composites as a repair material for damaged honeycomb cores. FME Transactions, vol. 41, br. 4, str. 325-332
Fotouhi, M., Saghafi, H., Brugo, T., Minak, G., Fragassa, C., Zucchelli, A., Ahmadi, M. (2017) Effect of PVDF nanofibers on the fracture behavior of composite laminates for high-speed woodworking machines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(1): 31-43
Fotouhi, M., Fragassa, C., Fotouhi, S., Saghafi, H., Minak, G. (2019) Damage characterization of nano-interleaved CFRP under static and fatigue loading. Fibers, 7(2): 13-13
Fotouhi, S., Clamp, J., Bolouri, A., Pozegic, T.R., Fotouhi, M. (2019) Investigating polyethersulfone interleaved Glass/Carbon hybrid composite under impact and its comparison with GLARE. Composite Structures, 226(111268): 111268-111268
Fragassa, C., de Camargo, F.V., Pavlovic, A., Minak, G. (2019) Explicit numerical modeling assessment of a basalt reinforced composite for low-velocity impact. Composites Part B: Engineering, Vol. 163, pp. 522-535
Fragassa, C. (2019) Engineering design driven by models and measures: The case of a rigid inflatable boat. Journal of Marine Science and Engineering, Vol. 7(1): 6-6, MDPI AG
Fragassa, C., Pavlovic, A., Santulli, C. (2018) Mechanical and impact characterisation of flax and basalt fibre bio-vinylester composites and their hybrids. Composites Part B: Engineering, 137: 247-259
Fragassa, C., de Camargo, F.V., Pavlovic, A., Minak, G. (2018) Experimental evaluation of static and dynamic properties of low styrene emission vinylester laminates reinforced by natural fibres. Polymer Testing, 69: 437-449
Friedrich, K., Almajid, A.A. (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20(2): 107-128
Fuoss, E., Straznicky, P.V., Poon, C. (1998) Effects of stacking sequence on the impact resistance in composite laminates: Part 1: Parametric study. Composite Structures, 41(1): 67-77
Howard, W.E., Gossard, T., Jones, R.M. (1989) Reinforcement of composite laminate free-edges with U-shaped caps. AIAA Journal, Vol. 27, pp. 610-623
Hundekari, R.R., Gururaja, S.S. (2012) Low velocity impact damage on CFRPs: A parametric study. u: ASME International Mechanical Engineering Congress and Exposition, Vol. 86228, pp. 103-114
Jang, B.P., Huang, C.T., Hsieh, C.Y., Kowbel, W., Jang, B.Z. (1991) Repeated impact failure of continuous fiber reinforced thermoplastic and thermoset composites. Journal of Composite Materials, 25(9): 1171-1203
Jawaid, M., Thariq, M., ur. (2018) Handbook: Sustainable composites for aerospace applications. Cambridge: Elsevier - Woodhead Publishing
Kaczmarek, H., Maison, S. (1994) Comparative ultrasonic analysis of damage in CFRP under static indentation and low-velocity impact. Composites Science and Technology, 51(1): 11-26
Kreculj, D., Rašuo, B. (2013) Review of impact damages modelling in laminated composite aircraft structures. Technical Gazette, Vol. 20; No. 3, pp. 485-495, June
Lopes, C.S., Seresta, O., Coquet, Y., Gürdal, Z., Camanho, P.P., Thuis, B. (2009) Low-velocity impact damage on dispersed stacking sequence laminates: Part I: Experiments. Composites Science and Technology, 69(7-8): 926-936
Lubin, G. (2013) Handbook of composites. Springer Science & Business Media
Mignery, L.A., Tan, T.M., Sun, C.T. (1985) The use of stitching to suppress delamination in laminated composites. American Society for testing and materials (ASTM), STP 876, 371-385
Minak, G., Brugo, T.M., Fragassa, C., Pavlovic, A., de Camargo, F.V., Zavatta, N. (2019) Structural design and manufacturing of a cruiser class solar vehicle. Journal of Visual Experiments, Vol. 143, No. e58525
Minak, G., Brugo, T.M., Fragassa, C. (2019) Ultrahigh-molecular-weight polyethylene rods as an effective design solution for the suspensions of a cruiser-class solar vehicle. International Journal of Polymer Science, ID. 8317093
Odagiri, N., Muraki, T., Obukuro, K. (1988) Toughness improved high performance Torayca prepreg T800H/3900 series. Proceedings of Society for the Advancement of Material and Process Engineering, Anaheim, CA, Vol. 33, pp. 272-83
Pagona, N.J., Pipes, R.B. (1971) The influence of stacking sequence on laminate strength. Journal of Composite Materials, Vol. 5, pp. 50-57
Rasuo, B. (2011) Experimental techniques for evaluation of fatigue characteristics of laminated constructions from composite materials: Full-scale testing of the helicopter rotor blades. Journal of Testing and Evaluation, Vol. 39, No. 2, pp. 237-242
Rasuo, B. (2007) An experimental methodology for evaluating survivability of an aeronautical construction from composite materials: An overview. International Journal of Crashworthiness, London, 12(1): 9-15, Taylor & Francis
Robinette, E.J. (2006) Toughening vinyl ester matrix composites by tailoring nanoscale and mesoscale interfaces. Philadelphia, PA: Drexel University - Chemical & Biological Engineering Department, PhD Dissertation
Rotem, A. (1988) The strength of laminated composite materials under repeated impact loading. Journal of Composites Technology and Research, Vol. 10. No. 2, pp. 74-79
Rouchon, J. (1995) Fatigue and damage tolerance aspects for composite aircraft structures. Delft
Rouchon, J. (1990) Certification of large airplane composite structures, recent progress and new trends in compliance philosophy. u: 7th International Council of the Aeronautical Sciences, Stockholm, 1990
Ruban, R.B., Asokan, R., Santulli, C., Pavlović, A., Fragassa, C. (2019) The effect of fibre bridging on Mode I interlaminar fracture toughness of carbon-aramid/epoxy intra-ply hybrid laminates. Tribology in Industry, vol. 41, br. 1, str. 64-75
Saeedifar, M., Najafabadi, M.A., Zarouchas, D., Toudeshky, H.H., Jalalvand, M. (2018) Barely visible impact damage assessment in laminated composites using acoustic emission. Composites Part B: Engineering, Vol. 152, pp. 180-192
Saghafi, H., Brugo, T.M., Zucchelli, A., Fragassa, C., Minak, G. (2016) Comparison of the effect of preload and curvature of composite laminate under impact loading. FME Transactions, vol. 44, br. 4, str. 353-357
Saghafi, H., Fotouhi, M., Minak, G., Saeedifar, M. (2018) Improvement of the impact properties of composite laminates by means of nano-modification of the matrix: A review. Applied Sciences: Nanotechnology and Applied Nanosciences, Vol. 8, pp. 2406-2413
Shyr, T., Pan, Y. (2003) Impact resistance and damage characteristics of composite laminates. Composite Structures, 62(2): 193-203
Sihn, S., et al. (2008) Improvement of damage resistance in laminated composites with electrospun nanointerlayers. Composite Science and Technology, Vol. 68, pp. 673-683
Silberschmidt, V.V. (2016) Dynamic deformation, damage and fracture in composite materials and structures. Woodhead Publishing
Sjoblom, P.O., Hartness, J.T., Cordell, T.M. (1988) On low-velocity impact testing of composite materials. Journal of Composite Materials, 22(1): 30-52
Sun, X.C., Hallett, S.R. (2017) Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations. International Journal of Impact Engineering, 109: 178-195
Zweben, C.H., Beaumont, P.W.R., ur. (2018) Comprehensive composite materials II. Amsterdam: Elsevier
Živković, I., Fragassa, C., Pavlović, A., Brugo, T. (2017) Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Composites Part B: Engineering, 111: 148-164
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2002287T
objavljen u SCIndeksu: 04.05.2020.
Creative Commons License 4.0