Akcije

Serbian Journal of Experimental and Clinical Research
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 1 od 1  
The effect of serotonergic lesions in the medial prefrontal cortex on psychotomimetic drug-induced locomotor hyperactivity and prepulse inhibition in rats
(naslov ne postoji na srpskom)
aDepartment of Nursing, University of Melbourne, Carlton, Victoria, Australia + Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Victoria, Australia
bBehavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Victoria, Australia + Department of Pharmacology, University of Melbourne, Carlton, Victoria, Australia

e-adresaskusljic@unimelb.edu.au
Ključne reči: schizophrenia; serotonin; medial prefrontal cortex; prepulse inhibition
Sažetak
(ne postoji na srpskom)
While dysfunction of the prefrontal cortex has been repeatedly implicated in the pathophysiology of schizophrenia, the role of serotonin in this brain region in schizophrenia is unclear. We therefore examined the effects of local serotonin depletion in the medial prefrontal cortex on psychotomimetic drug-induced locomotor hyperactivity and prepulse inhibition, two animal models of aspects of schizophrenia. Pentobarbital-anaesthetised (60 mg/kg, i.p.) male Sprague-Dawley rats were stereotaxically micro-injected with 0.5 μl of a 5 μg/μl solution of the serotonin neurotoxin 5,7-dihydroxytryptamine into the medial prefrontal cortex. Two weeks after the surgery, rats underwent behavioural testing. When compared to sham-operated controls, rats with me dial prefrontal cortical lesions did not show changes in either psychotomimetic drug-induced locomotor hyperactivity or prepulse inhibition. However, following the administration of the serotonin neurotoxin into the medial prefrontal cortex, the concentration of serotonin was reduced by 60%. These results suggest that serotonin depletion in the medial prefrontal cortex does not lead to dysregulation of subcortical dopaminergic activity and does not cause aberrant responses to environmental stimuli.
Reference
Abi-Dargham, A., i dr. (1997) The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsych Clin Neurosci, 9(1): p. 1-17
Adell, A., Myers, R.D. (1995) Selective destruction of midbrain raphe nuclei by 5,7-DHT: Is brain 5-HT involved in alcohol drinking in Sprague-Dawley rats?. Brain Research, 693(1-2): p. 70-79
Awad, G.A., Voruganti, L.N.P. (2004) Impact of atypical antipsychotics on quality of life in patients with schizophrenia. CNS drugs, 18(13): 877-93
Azmitia, E.C., Whitaker-Azmitia, P.M. (1995) Anatomy, cell biology, and plasticity of the serotonergic system: Neuropsychopharmacological implications for the actions of psychotropic drugs. u: Bloom F.E., Kupfer D.J. [ur.] Psychopharmacology: The fourth generation of progress, New York: Raven Press, p. 443-449
Braff, D., Geyer, M. (1989) Sensorimotor gating and the neurobiology of schizophrenia: Human and animal model studies. u: Schulz S., Tamminga C. [ur.] Schizophrenia: Scientific progress, Oxford: Oxford University Press, str. 124-137
Bymaster, F., i dr. (1999) Olanzapine: A basic science update. Br J Psychiatry Suppl, (37): str. 36-40
Carlsson, A., Waters, N., Carlsson, M.L. (1999) Neurotransmitter interactions in schizophrenia: Therapeutic implications. Biological psychiatry, 46(10): 1388-95
Carlsson, A., Lindqvist, M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol, 20: str. 140-144
Contreras, P.C., Monahan, J.B., Lanthorn, T.H., Pullan, L.M., DiMaggio, D.A., Handelmann, G.E., Gray, N.M., Donohue, O.T.L. (1987) Phencyclidine: Physiological actions, interactions with excitatory amino acids and endogenous ligands. Molecular neurobiology, 1(3): 191-211
Costall, B., Naylor, R.J. (1992) Serotonin and psychiatric disorders: A key to new therapeutic approaches. Arzneimittel-Forschung, 42(2A): 246-9
Drevets, W.C., Price, J.L., Simpson, J.R., Todd, R.D., Reich, T., Vannier, M., Raichle, M.E. (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386(6627): 824-7
Ellenbroek, B.A., Budde, S., Cools, A.R. (1996) Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience, 75(2): 535-42
Ellenbroek, B.A., Cools, A.R. (1990) Animal models with construct validity for schizophrenia. Behavioural pharmacology, 1(6): 469-490
Ellenbroek, B.A., Cools, A.R. (2000) Animal models for the negative symptoms of schizophrenia. Behav Pharmacol, 11(3-4): str. 223-233
Ellenbroek, B.A. (2004) Pre-attentive processing and schizophrenia: Animal studies. Psychopharmacology, 174(1): 65-74
Geyer, M.A., Markou, A. (1995) Animal models of psychiatric disorders. u: Bloom F., Kupfer D. [ur.] Psychopharmacology: The fourth generation of progress, New York: Raven Press, str. 787-798
Geyer, M.A., Swerdlow, N.R., Mansbach, R.S., Braff, D.L. (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain research bulletin, 25(3): 485-98
Gispen, W.H., Schotman, P., Kloet, E.R. (1972) Brain RNA and hypophysectomy; a topographical study. Neuroendocrinology, 9(5): 285-96
Grace, A.A. (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41(1): 1-24
Hajós, M., Gartside, S.E., Varga, V., Sharp, T. (2003) In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology, 45(1): 72-81
Harrison, P.J. (1999) The neuropathology of schizophrenia. Brain, 122(Pt 4): 593-624
Heidbreder, C.A., Groenewegen, H.J. (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience and biobehavioral reviews, 27(6): 555-79
Hornung, J. (2003) The human raphe nuclei and the serotonergic system. Journal of chemical neuroanatomy, 26(4): 331-43
Javitt, D.C., Zukin, S.R. (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry, 148(10): 1301-8
Jentsch, J.D., Wise, A., Katz, Z., Roth, R.H. (1998) Alpha-noradrenergic receptor modulation of the phencyclidine- and delta9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex. Synapse (New York, N.Y.), 28(1): 21-6
Jonsson, G. (1980) Chemical neurotoxins as denervation tools in neurobiology. Annual review of neuroscience, 3: 169-87
Josselyn, S.A., Miller, R., Beninger, R.J. (1997) Behavioral effects of clozapine and dopamine receptor subtypes. Neuroscience and biobehavioral reviews, 21(5): 531-58
Kapur, S., Remington, G. (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. American journal of psychiatry, 153(4): 466-76
Karreman, M., Moghaddam, B. (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. Journal of neurochemistry, 66(2): 589-98
Kelly, P.H., Seviour, P.W., Iversen, S.D. (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain research, 94(3): 507-22
Koch, M. (2000) Can animal models help to understand human diseases? Commentary on Swerdlow et al., 'Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon'. Behav Pharmacol, 11(3-4): p. 205-207
Koch, M. (1999) The neurobiology of startle. Progress in neurobiology, 59(2): 107-28
Koch, M., Bubser, M. (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. European journal of neuroscience, 6(12): 1837-45
Kolb, B. (1984) Functions of the frontal cortex of the rat: a comparative review. Brain research, 320(1): 65-98
Kusljic, S., Brosda, J., Norman, T.R., Buuse, M. (2005) Brain serotonin depletion by lesions of the median raphe nucleus enhances the psychotomimetic action of phencyclidine, but not dizocilpine (MK-801), in rats. Brain research, 1049(2): 217-26
Kusljic, S., Copolov, D.L., Buuse, M. (2003) Differential role of serotonergic projections arising from the dorsal and median raphe nuclei in locomotor hyperactivity and prepulse inhibition. Neuropsychopharmacology, 28(12): 2138-47
Kusljic, S., Buuse, M. (2004) Functional dissociation between serotonergic pathways in dorsal and ventral hippocampus in psychotomimetic drug-induced locomotor hyperactivity and prepulse inhibition in rats. European journal of neuroscience, 20(12): 3424-32
Kusljic, S., Buuse, M. (2006) Differential involvement of 5-HT projections within the amygdala in prepulse inhibition but not in psychotomimetic drug-induced hyperlocomotion. Behavioural brain research, 168(1): 74-82
Lacroix, L., i dr. (2000) Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behav Brain Res, 107(1-2): p. 111-121
Laruelle, M., Abi-Dargham, A., Casanova, M.F., Toti, R., Weinberger, D.R., Kleinman, J.E. (1993) Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. Archives of general psychiatry, 50(10): 810-8
Mansbach, R.S., Geyer, M.A. (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology, 2(4): 299-308
Mansbach, R.S., Braff, D.L., Geyer, M.A. (1989) Prepulse inhibition of the acoustic startle response is disrupted by N-ethyl-3,4-methylenedioxyamphetamine (MDEA) in the rat. European journal of pharmacology, 167(1): 49-55
Mansbach, R.S., Geyer, M.A., Braff, D.L. (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology, 94(4): 507-14
Matthysse, S. (1986) Animal models in psychiatric research. Progress in brain research, 65: 259-70
Mayberg, H.S., Liotti, M., Brannan, S.K., McGinnis, S., Mahurin, R.K., Jerabek, P.A., Silva, J.A., Tekell, J.L., Martin, C.C., Lancaster, J.L., Fox, P.T. (1999) Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Am J Psychiatry, 156(5): 675-82
Mcquade, R., Sharp, T. (1997) Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. Journal of neurochemistry, 69(2): 791-6
Meston, C.M., Gorzalka, B.B. (1992) Psychoactive drugs and human sexual behavior: the role of serotonergic activity. Journal of psychoactive drugs, 24(1): 1-40
Moghaddam, B., Adams, B., Verma, A., Daly, D. (1997) Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci, 17(8): 2921-7
Moghaddam, B., Adams, B.W. (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science (New York, N.Y.), 281(5381): 1349-52
Mokler, D.J., Lariviere, D., Johnson, D.W., Theriault, N.L., Bronzino, J.D., Dixon, M., Morgane, P.J. (1998) Serotonin neuronal release from dorsal hippocampus following electrical stimulation of the dorsal and median raphé nuclei in conscious rats. Hippocampus, 8(3): 262-73
Paxinos, G., Watson, C. (2005) The rat brain stereotaxic coordinates. New York-San Diego, itd: Academic Press
Peroutka, S.J., Synder, S.H. (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic, and histamine receptors to clinical potency. American journal of psychiatry, 137(12): 1518-22
Pradhan, S.N. (1984) Phencyclidine (PCP): some human studies. Neuroscience and biobehavioral reviews, 8(4): 493-501
Rigdon, G.C., Weatherspoon, J.K. (1992) 5-Hydroxytryptamine 1a receptor agonists block prepulse inhibition of acoustic startle reflex. Journal of pharmacology and experimental therapeutics, 263(2): 486-93
Schlundt, D.G., Virts, K.L., Sbrocco, T., Pope-Cordle, J., Hill, J.O. (1993) A sequential behavioral analysis of craving sweets in obese women. Addictive behaviors, 18(1): 67-80
Seiden, L.S., Sabol, K.E., Ricaurte, G.A. (1993) Amphetamine: Effects on catecholamine systems and behavior. Annual review of pharmacology and toxicology, 33: 639-77
Sesack, S.R., Pickel, V.M. (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. Journal of comparative neurology, 320(2): 145-60
Sipes, T.A., Geyer, M.A. (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology, 33(3-4): str. 441-448
Swerdlow, N.R., Braff, D.L., Geyer, M.A. (1990) GABAergic projection from nucleus accumbens to ventral pallidum mediates dopamine-induced sensorimotor gating deficits of acoustic startle in rats. Brain Research, 532(1-2): p. 146-150
Swerdlow, N.R., Bakshi, V., Waikar, M., Taaid, N., Geyer, M.A. (1998) Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology, 140(1): 75-80
Swerdlow, N.R., Geyer, M.A., Braff, D.L. (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: Current knowledge and future challenges. Psychopharmacology, Berl, 156(2-3): str. 194-215
Taber, M.T., Das, S., Fibiger, H.C. (1995) Cortical regulation of subcortical dopamine release: Mediation via the ventral tegmental area. Journal of neurochemistry, 65(3): 1407-10
Tarazi, F.I., Baldessarini, R.J. (1999) Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions. Journal of neuroscience research, 55(4): 401-10
Thomas, H., Fink, H., Sohr, T.R., Voits, M. (2000) Lesion of the median raphe nucleus: A combined behavioral and microdialysis study in rats. Pharmacology, biochemistry, and behavior, 65(1): 15-21
van den Buuse, M. (2003) Deficient prepulse inhibition of acoustic startle in Hooded-Wistar rats compared with Sprague-Dawley rats. Clinical and experimental pharmacology & physiology, 30(4): 254-61
Vertes, R.P. (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse (New York, N.Y.), 51(1): 32-58
Wan, F.J., Geyer, M.A., Swerdlow, N.R. (1995) Presynaptic dopamine-glutamate interactions in the nucleus accumbens regulate sensorimotor gating. Psychopharmacology, 120(4): 433-41
Weinberger, D.R., Berman, K.F., Zec, R.F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry, 43(2): 114-24
Weinberger, D.R., Lipska, B.K. (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: A search for common ground. Schizophrenia Research, 16(2): 87-110
Weiner, D.M., Burstein, E.S., Nash, N., Croston, G.E., Currier, E.A., Vanover, K.E., Harvey, S.C., Donohue, E., Hansen, H.C., Andersson, C.M., Spalding, T.A., Gibson, D.F., Krebs-Thomson, K., Powell, S.B., Geyer, M.A., Hacksell, U., Brann, M.R. (2001) 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. Journal of pharmacology and experimental therapeutics, 299(1): 268-76
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/sjecr1101011K
objavljen u SCIndeksu: 22.06.2011.