Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:11
  • preuzimanja u prethodnih 30 dana:7
članak: 1 od 1  
Telfor Journal
2018, vol. 10, br. 1, str. 32-37
jezik rada: engleski
vrsta rada: neklasifikovan

Analysis of the Band-pass and Notch filter with dynamic damping of fractional order including discrete models
(naslov ne postoji na srpskom)
aUniverzitet u Novom Sadu, Fakultet tehničkih nauka
bUniverzitet u Beogradu, Elektrotehnički fakultet
cUniversity of Montenegro, Faculty of Electrical Engineering, Podgorica, Montenegro
dUniversity of East Sarajevo, Faculty of Electrical Engineering, East Sarajevo, Bosnia and Herzegovina

e-adresa:,, rapaja@uns.


Povećanje energetske efikasnosti HE i TE EPS-a razvojem tehnologije i uređaja energetske elektronike za regulaciju i automatizaciju (MPNTR - 33020)
Inteligentni nadzorno upravljački sistem za rano otkrivanje i eliminaciju neželjenih stanja i promena na uređajima, opremi i procesima procesne industrije (MPNTR - 32018)
Razvoj inteligentnog nadzorno upravljačkog sistema za povećanje energetske efikasnosti zgrada (MPNTR - 33013)


(ne postoji na srpskom)
The paper presents analysis of the second order band-pass and notch filter with a dynamic damping factor βd of fractional order. Factor βd is given in the form of fractional differentiator of order a, i.e. βd=β/sa , where β and a are adjustable parameters. The aim of the paper is to exploit an extra degree of freedom of presented filters to achieve the desired filter specifications and obtain a desired response in the frequency and time domain. Shaping of the frequency response enables achieving a better phase response compared to the integer-order counterparts which is of great concern in many applications. For the implementation purpose, the paper presents a comparison of four discretization techniques: the Osutaloup's Recursive Algorithm (ORA+Tustin), Continued Fractional Expansion (CFE+Tustin), Interpolation of Frequency Characteristic (IFC+Tustin) and recently proposed AutoRegressive with eXogenous input (ARX)-based direct discretization method.

Ključne reči

Butterworth filter; Discretization; Fractionalorder filter; Fractional calculus; Frequency response


AbdelAty, A.M., Soltan, A., Ahmed, W.A., Radwan, A.G. (2018) On the Analysis and Design of Fractional-Order Chebyshev Complex Filter. Circuits, Systems, and Signal Processing, 37(3): 915-938
Acharya, A., Das, S., Pan, I., Das, S. (2014) Extending the concept of analog Butterworth filter for fractional order systems. Signal Processing, 94: 409-420
Ali, A. S., Radwan, A. G., Soliman, A.M. (2013) Fractional Order Butterworth Filter: Active and Passive Realizations. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3): 346-354
Atanackovic, T.M., Pilipovic, S., Zorica, D. (2007) A diffusion wave equation with two fractional derivatives of different order. Journal of Physics A: Mathematical and Theoretical, 40(20): 5319-5333
Baranowski, J., Piątek, P. (2017) Fractional Band-Pass Filters: Design, Implementation and Application to EEG Signal Processing. Journal of Circuits, Systems and Computers, 26(11): 1750170
Barbosa, R.S., Tenreiro, M.J.A., Silva, M.F. (2006) Time domain design of fractional differintegrators using least-squares. Signal Processing, 86(10): 2567-2581
Biswas, K., Bohannan, G., Caponetto, R., Mendes, L.A., Tenreiro, M.J.A., Biswas, K., Bohannan, G., Caponetto, R., Mendes, L.A., Tenreiro, M.J.A. (2017) Introduction to Fractional-Order Elements and Devices. Cham: Springer Nature America, Inc, str. 1-20
Bohannan, G.W., Hurst, S.K., Spangler, L. (2006) Electrical component with fractional-order impedance. U.S. Patent Application, No. 11/372, 232
Boskovic, M., Sekara, T.B., Rapaic, M.R., Lutovac, B., Dakovic, M., Govedarica, V. (2017) Novel band-pass and notch filter with dynamic damping of fractional order. u: 2017 25th Telecommunication Forum (TELFOR), Institute of Electrical and Electronics Engineers (IEEE), str. 1-4
Boskovic, M.C., Sekara, T.B., Lutovac, B., Dakovic, M., Mandic, P.D., Lazarevic, M.P. (2017) Analysis of electrical circuits including fractional order elements. u: 2017 6th Mediterranean Conference on Embedded Computing (MECO), Institute of Electrical and Electronics Engineers (IEEE), str. 1-6
Bošković, M.Č., Šekara, T.B., Rapaić, M., Lazarević, M., Mandić, P. (2016) A Novel ARX-based discretization method for linear non-rational systems. u: International Conference on Fractional Differentiation and its Applications (ICFDA 2016), Novi Sad, Serbia, July, vol. 1, pp. 343-352, ISBN: 978-86-7892-830-7
Boxer, R., Thaler, S. (1956) A Simplified Method of Solving Linear and Nonlinear Systems. Proceedings of the IRE, 44(1): 89-101
Butterworth, S. (1930) On the theory of filter amplifiers. Wireless Engineer, vol. 7, 536-541
Camargo, R.F., de Oliveira, E.C., Vaz, J. (2012) On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation. Mathematical Physics, Analysis and Geometry, 15(1): 1-16
Chen, D., Chen, Y., Xue, D. (2015) Fractional-order total variation image denoising based on proximity algorithm. Applied Mathematics and Computation, 257: 537-545
Chen, X., Chen, Y., Zhang, B., Qiu, D. (2017) A Modeling and Analysis Method for Fractional-Order DC-DC Converters. IEEE Transactions on Power Electronics, 32(9): 7034-7044
Coopmans, C., Petras, I., Chen, Y.Q. (2009) Analogue fractional-order generalized memristive devices. u: ASME 2009 Int. Design Eng. Tech. Conf. Comput. Inf. Eng. Conf. (IDETC/CIE), San Diego, USA
Cvetićanin, S.M., Zorica, D., Rapaić, M.R. (2017) Generalized time-fractional telegrapher's equation in transmission line modeling. Nonlinear Dynamics, 88(2): 1453-1472
Dvorak, J., Langhammer, L., Jerabek, J., Koton, J., Sotner, R., Polak, J. (2018) Synthesis and Analysis of Electronically Adjustable Fractional - Order Low-Pass filter. Journal of Circuits, Systems, and Computers, vol. 27, issue 2, Feb
Freeborn, T.J. (2013) A Survey of Fractional-Order Circuit Models for Biology and Biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3): 416-424
Jakovljevic, B.B., Rapaic, M.R., Jelicic, Z.D., Sekara, T.B. (2014) Optimization of distributed order fractional PID controller under constraints on robustness and sensitivity to measurement noise. u: ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014, Institute of Electrical and Electronics Engineers (IEEE), str. 1-6
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006) Theory and applications of fractional differential equations. Amsterdam: Elsevier
Lazarevic, M.P., Mandic, P.D., Cvetkovic, B., Sekara, T.B., Lutovac, B. (2016) Some electromechanical systems and analogies of mem-systems integer and fractional order. u: 2016 5th Mediterranean Conference on Embedded Computing (MECO), Institute of Electrical and Electronics Engineers (IEEE), str. 230-233
Lazarević, M.P., ur. (2014) Advanced topics on applications of fractional calculus on control problems, system stability and modeling. WSEAS, p.202, ISBN:978-960-474-348-3, ID9028
Lazopoulos, K. A., Lazopoulos, A. K. (2016) Fractional derivatives and strain gradient elasticity. Acta Mechanica, 227(3): 823-835
Machado, J. T., Kiryakova, V., Mainardi, F. (2011) Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 16(3): 1140-1153
Magin, R.L. (2006) Fractional calculus in bioengineering. Begell House Publishers, 684 pages
Mandić, P.D., Šekara, T.B., Lazarević, M.P., Bošković, M. (2017) Dominant pole placement with fractional order PID controllers: D-decomposition approach. ISA Transactions, 67: 76-86
Mophou, Gisèle. M. (2011) Optimal control of fractional diffusion equation. Computers & Mathematics with Applications, 61(1): 68-78
Oldham, K.B., Spanier, J. (1974) Fractional calculus: theory and applications, differentiation and integration to arbitrary order. NewYork: Academic Press
Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M. (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1): 25-39
Paarmann, L.D. (2001) Design and Analysis of Analog Filters: A Signal Processing Perspective. Berlin: Springer
Petráš, I. (2012) Tuning and implementation methods for fractional-order controllers. Fractional Calculus and Applied Analysis, 15(2): 282-303
Podlubny, I. (1999) Fractional differential equations. New York-San Diego, itd: Academic Press
Pommier, V., Sabatier, J., Lanusse, P., Oustaloup, A. (2002) Crone control of a nonlinear hydraulic actuator. Control Engineering Practice, 10(4): 391-402
Radwan, A. G., Salama, K. N. (2011) Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(10): 2388-2397
Radwan, A. G., Salama, K. N. (2012) Fractional-Order RC and RL Circuits. Circuits, Systems, and Signal Processing, 31(6): 1901-1915
Radwan, A.G., Emira, A.A., AbdelAty, A.M., Azar, A.T. (2017) Modeling and analysis of fractional order DC-DC converter. ISA Transactions
Rapaić, M.R., Šekara, T.B., Lazarević, M.P. (2014) On discrete finite dimensional approximation of linear, infinite dimensional systems. u: Fractional Calculus Theory, Mathematics Research Developments, pp. 257-274, ISBN 978-1-63463-002
Rapaić, M.R., Šekara, T.B. (2011) Novel direct optimal and indirect method for discretization of linear fractional systems. Electrical Engineering, 93(2): 91-102
Rapaić, M.R., Jeličić, Z.D. (2010) Optimal control of a class of fractional heat diffusion systems. Nonlinear Dynamics, 62(1-2): 39-51
Sabatier, J., Oustaloup, A., Iturricha, A.G., Levron, F. (2003) CRONE control of continuous linear time periodic systems: Application to a testing bench. ISA Transactions, 42(3): 421-436
Said, L.A., Ismail, S.M., Radwan, A.G., Madian, A.H., Abu, E.M.F., Soliman, A.M. (2016) On The Optimization of Fractional Order Low-Pass Filters. Circuits, Systems, and Signal Processing, 35(6): 2017-2039
Shamim, A., Radwan, A. G., Salama, K. N. (2011) Fractional Smith Chart Theory. IEEE Microwave and Wireless Components Letters, 21(3): 117-119
Sheoran, S.S., Kalkal, K.K., Deswal, S. (2016) Fractional order thermo-viscoelastic problem with temperature dependent modulus of elasticity. Mechanics of Advanced Materials and Structures, 23(4): 407-414
Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P. (2015) Diffusion process modeling by using fractional-order models. Applied Mathematics and Computation, 257: 2-11
Smith, J.M. (1987) Mathematical modeling and digital simulation for engineers and scientists. New York: Wiley, Second Ed
Šekara, T.B. (2006) New transformation polynomials for discretization of analogue systems. Electrical Engineering, 89(2): 137-147
Šekara, T.B., Mataušek, M.R. (2011) Relay-based critical point estimation of a process with the PID controller in the loop. Automatica, 47(5): 1084-1088
Tenreiro, M.J.A., Jesus, I.S., Galhano, A., Boaventura, C.J. (2006) Fractional order electromagnetics. Signal Processing, 86(10): 2637-2644
Tseng, C., Lee, S. (2017) Closed-form designs of digital fractional order Butterworth filters using discrete transforms. Signal Processing, 137: 80-97
Tsirimokou, G., Psychalinos, C., Elwakil, A. (2017) Design of CMOS Analog Integrated Fractional-Order Circuits. Cham: Springer Nature America, Inc
Wu, C., Si, G., Zhang, Y., Yang, N. (2015) The fractional-order state-space averaging modeling of the Buck-Boost DC/DC converter in discontinuous conduction mode and the performance analysis. Nonlinear Dynamics, 79(1): 689-703