Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:2
  • preuzimanja u prethodnih 30 dana:2
članak: 1 od 1  
Telfor Journal
2018, vol. 10, br. 1, str. 56-61
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1801056G


High dynamic range mapping for synthetic aperture radar images
(naslov ne postoji na srpskom)
aUniverzitet u Beogradu, Elektrotehnički fakultet, Katedra za telekomunikacije
bUniverzitet u Beogradu, Saobraćajni fakultet
cICT College of Vocational Studies, Belgrade
dUnited Institute of Informatics Problems, Minsk, Belarus

e-adresa: anaga777@gmail.com

Projekat

Razvoj visokokvalitetnih uređaja posebne namene na bazi novih tehnologija kristalnih jedinki (MPNTR - 32048)
Bilateral Project with Republic of Belarus.

Sažetak

(ne postoji na srpskom)
Luminance compression is often performed for high dynamic range images (still images and videos). A nonlinear tone mapping is applied for the compression in order to reproduce high dynamic range images using devices with a more limited (low) dynamic range. The images obtained after mapping may provide significant content differences in comparison to original data. This can be found for both optical and non-optical images. In this paper, we consider non-optical high dynamic range images, such as synthetic aperture radar images. Particularly, luminance compression may produce unwanted effects. Artificial objects found in an image and speckle noise may significantly affect the quality after tone mapping. In this paper, we consider several examples related to synthetic aperture radar images, as well as several global and a local luminance reduction method. The experimental analysis includes a comparison of several quality assessment methods.

Ključne reči

High dynamic range; synthetic aperture radar; luminance reduction; entropy; image quality

Reference

*** Scikit-learn. http://scikit-learn.org/stable/ (last accessed 04.03.2018.)
Arslan, G., Valliappan, M. (1998) Literature survey on synthetic aperture radar (SAR) image compression. u: EE381K Multidimensional Signal Processing
Banterle, F., Artusi, A., Debattista, K., Chalmers, A. (2011) Advanced high dynamic range imaging: Theory and practice. CRC Press
Fu, Y., Wang, S. (2016) A No Reference Image Quality Assessment Metric Based on Visual Perception. Algorithms, 9(4): 87
Gavrovska, A., Samčović, A. (2017) Procena smanjenja dinamičkog opsega. u: 35. simpozijum o novim tehnologijama u poštanskom i telekomunikacionom saobraćaju, PosTel2017, Belgrade, Dec, pp. 221-230
Gavrovska, A., Reljin, I., Samčović, A., Starovoitov, V., Milivojević, M. (2017) Comments on human visual attention in high dynamic range images. u: The 4th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2017, Kladovo, Serbia, June 5-8, Proceedings of, EK(I)2-1-4
Gavrovska, A., Samčović, A. (2016) Mogućnosti unapređenja kvaliteta slike i videa viokog dinamičkog opsega. u: 34. simpozijum o novim tehnologijama u poštanskom i telekomunikacionom saobraćaju, PosTel2016, Belgrade, Nov, pp. 265-274
Gavrovska, A., Reljin, I., Samcovic, A., Milivojevic, M., Zajic, G., Starovoitov, V. (2017) On luminance reduction in high dynamic range synthetic aperture radar images. u: 2017 25th Telecommunication Forum (TELFOR), Institute of Electrical and Electronics Engineers (IEEE), str. 1-4
Hanhart, P., Bernardo, M., Korshunov, P., Pereira, M., Pinheiro, A., Ebrahimi, T. (2015) HDR image compresion: a new challenge for objective quality metrics. Expert Systems with Applications, Vol. 42, No. 9, pp 4177-4195
Hisanaga, S., Wakimoto, K., Okamura, K. (2011) Tone mapping and blending method to improve SAR image visibility. IAENG International Journal of Computer Science, 38(3), pp. 289-294
Lambers, M., Nies, H., Kolb, A. (2008) Interactive Dynamic Range Reduction for SAR Images. IEEE Geoscience and Remote Sensing Letters, 5(3): 507-511
Lambers, M., Kolb, A. (2008) Adaptive dynamic range reduction for SAR images. u: 7th European Conference on Synthetic Aperture Radar (EUSAR), Proc, vol. 3, pp. 371-374
Ok, J., Lee, C. (2017) HDR tone mapping algorithm based on difference compression with adaptive reference values. Journal of Visual Communication and Image Representation, 43: 61-76
Pavlović, A., Gavrovska, A., Reljin, I. (2017) Multifractal spectrum of the images obtained by copy move method. u: The 4th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2017, Kladovo, Serbia, June 5-8, Proceedings of, pp. EKI1-1- 4
Starovoitov, V. (2016) High dynamic range SAR image compression for visualization. pp. 218-222
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E. (2004) Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, vol. 13, str. 600-612
Yeganeh, H., Wang, Z. (2013) Objective Quality Assessment of Tone-Mapped Images. IEEE Transactions on Image Processing, 22(2): 657-667
Zhang, B., Wang, C., Zhang, H., Wu, F. (2015) An adaptive two-scale enhancement method to visualize man-made objects in very high resolution SAR images. Remote Sensing Letters, 6(9): 725-734
Zhang, J.B., Wang, C., Zhang, H., Wu, F. (2014) Adaptive intensity compression for high dynamic SAR image. u: 10th European Conference on Synthetic Aperture Radar (EUSAR), Proceedings of, pp. 497-500