Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u prethodnih 30 dana:12
  • preuzimanja u prethodnih 30 dana:5
članak: 1 od 1  
Telfor Journal
2018, vol. 10, br. 1, str. 62-67
jezik rada: engleski
vrsta rada: neklasifikovan
doi:10.5937/telfor1801062P


Analysis of fractional difference schemes with application to radiographic images
(naslov ne postoji na srpskom)
aUniversity of Belgrade, School of Electrical Engineering, Innovation Center, Belgrade
bUniverzitet u Beogradu, Elektrotehnički fakultet

e-adresa: milorad.paskas@ic.etf.rs, reljinb@etf.rs, irini@et

Projekat

Razvoj visokokvalitetnih uređaja posebne namene na bazi novih tehnologija kristalnih jedinki (MPNTR - 32048)
Bilateral Project with Republic of Belarus
Razvoj digitalnih tehnologija i umreženih servisa u sistemima sa ugrađenim elektronskim komponentama (MPNTR - 44009)

Sažetak

(ne postoji na srpskom)
Visual inspection of radiographic images by radiologists is a regular practice in making a diagnosis. Thus the enhancement of details in radiographs can improve inspection and diagnosis certainty. Through this paper we perform the analysis of the fractional gradient for visual improvement of chest radiographs. Two implementations of the fractional derivative operator, based on central fractional differences, are evaluated. Also we tested two norms for calculation of the magnitude of the fractional gradient, Euclidean and infimum norm, and the conducted tests for both norms are consistent.

Ključne reči

Fractional calculus; fractional derivative; gradient operators; image enhancement; radiographic images

Reference

Bai, J., Feng, X. (2007) Fractional-Order Anisotropic Diffusion for Image Denoising. IEEE Transactions on Image Processing, 16(10): 2492-2502
Gonzalez, R.C., Woods, R.E. (2007) Digital image processing. Prentice-Hall, Inc, 3rd ed
Image Sciences Institute SCR database. [Online]. Available: http://www.isi.uu.nl/Research/Databases/SCR/download.php. [Accessed: 03-Oct-2017]
Ortigueira, M.D., Tenreiro, M.J.A. (2015) What is a fractional derivative?. Journal of Computational Physics, 293: 4-13
Ortigueira, M.D. (2011) Fractional Calculus for Scientists and Engineers. Springer Nature America, Inc
Paskas, M.P., Reljin, I.S., Reljin, B.D. (2017) Novel Fractional-Order Difference Schemes Reducible to Standard Integer-Order Formulas. IEEE Signal Processing Letters, 24(6): 912-916
Paskas, M.P., Reljin, B.D., Reljin, I.S. (2017) Assessment of fractional derivative schemes for enhancement of chest radiographs. u: 2017 25th Telecommunication Forum (TELFOR), Institute of Electrical and Electronics Engineers (IEEE), str. 1-4
Podlubny, I. (1999) Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Mathematic). Academic Press
Sobel, I., Feldman, G. (1968) A 3x3 isotropic gradient operator for image processing
Yi-Fei, P., Ji-Liu, Z., Xiao, Y. (2010) Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement. IEEE Transactions on Image Processing, 19(2): 491-511
Zhang, Y.J., Gerbrands, J.J. (1991) Transition region determination based thresholding. Pattern Recognition Letters, 12(1): 13-23