Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:10
  • preuzimanja u poslednjih 30 dana:5
članak: 1 od 1  
Telfor Journal
2019, vol. 11, br. 1, str. 30-34
jezik rada: engleski
vrsta rada: neklasifikovan

Radiography calibration marker detection using Hough transformation
(naslov ne postoji na srpskom)


Razvoj dijaloških sistema za srpski i druge južnoslovenske jezike (MPNTR - 32035)
Razvoj multivarijabilnih metoda za analitičku podršku biomedicinskoj dijagnostici (MPNTR - 32040)


(ne postoji na srpskom)
In this paper we analyse the possibility of simple detection of circular radiography markers. To detect the marker, we utilised the Hough transform. Two approaches were analysed: with detecting image edges and without image edge detection where pixel gradient was used in the Hough voting process, i.e. to increase the accumulator values. Approaches were evaluated on 13 clinical radiography images. It was shown that the approach that detects image edges spatially matches the reference circles only 0.22 % less than manual annotation values, whereas the approach that uses just the gradient magnitudes spatially matches the reference circles 3.2 % less than manual annotations.

Ključne reči

digital radiography; image delineation; magnification detection; radiography marker


Boese, C.K., Lechler, P., Rose, L., Dargel, J., Oppermann, J., Eysel, P., Geiges, H., Bredow, J. (2015) Calibration Markers for Digital Templating in Total Hip Arthroplasty. PLoS One, 10(7): e0128529-e0128529
Cowen, A.R., Davies, A.G., Sivananthan, M.U. (2008) The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography. Clinical Radiology, 63(10): 1073-1085
Duda, R.O., Hart, P.E. (1972) Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1): 11-15
Nickoloff, E.L. (2011) AAPM/RSNA Physics Tutorial for Residents: Physics of Flat-Panel Fluoroscopy Systems. RadioGraphics, 31(2): 591-602
Novovic, L.D., Ostojic, V.S., Starcevic, D.S., Petrovic, V.S. (2018) Automatic Calibration Marker Detection for Radiography Images. u: 2018 26th Telecommunications forum (TELFOR), Belgrade, 309-312
Otsu, N. (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66
Rogers, D.J., Tanimoto, T.T. (1960) A Computer Program for Classifying Plants. Science, 132(3434): 1115-1118
Schueler, B.A. (1998) Clinical applications of basic x-ray physics principles. RadioGraphics, vol. 18, no. 3, pp. 731-744, pMID: 9599394. [Online]
Schueler, B.A. (2000) The AAPM/RSNA Physics Tutorial for Residents General Overview of Fluoroscopic Imaging. RadioGraphics, vol. 20, no. 4, pp. 1115-1126, pMID: 10903700. [Online]
Tanimoto, T.T. (1958) An elementary mathematical theory of classification and prediction. Internal IBM Technical Report
Vrooman, H.A., Valstar, E.R., Brand, G., Admiraal, D.R., Rozing, P.M., Reiber, J.H. (1998) Fast and accurate automated measurements in digitized stereophotogrammetric radiographs. Journal of Biomechanics, vol. 31, no. 5, pp. 491-498. [Online]