- citations in SCIndeks:
0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:0
- full-text downloads in 30 days:0
|
|
|
2017, vol. 54, iss. 2, pp. 73-78
|
|
Relationship between GC/EI-qMS disaccharide profiles and corresponding genomes of wheat, rye and triticale cultivars
Povezanost disaharidnih profila odredenih GC/EI-qMS sistemom sa genomima sorti pšenice, raži i tritikalea
aUniversity of Novi Sad, Faculty of Technology, Serbia
bUniversity of Novi Sad, Serbia
cInstitute of Field and Vegetable Crops, Novi Sad, Serbia
email: [email protected]
Project: Modern breeding of small grains for present and future needs (MESTD - 31066) COST Action FA1306: The quest for tolerant varieties: Phenotyping atplant and cellular level
Abstract
Cultivars of small grain species: wheat (Triticum aestivum), rye (Secale cereale) and triticale (Triticosecale) were selected because of their specific biochemical composition of carbohydrates for gas chromatographic analysis. Samples were grounded to flour and extracted with 96% ethanol solution. Extracted mono- and disaccharides were first derivatized into corresponding trimethylsilyl-oximes (TMSO) and analyzed on a GC/EI-qMS device. Four eluting peaks at specific retention times (18.57 min, 18.80 min, 20.85 min, and 21.39 min), were identified as trimethylsilyl-oximes of turanose, melibiose and two peaks of sucrose using Wiley 275 and NIST 14 mass spectra libraries, and were further selected as discrimination factors. Their presence/absence in certain small grain cultivar was labeled with 1/0 thus creating binary numerical matrices, introduced into multivariate analysis. Exploratory data analysis techniques were applied, thus providing a successful background for wheat, rye and triticale species differentiation, regardless of the specific cultivar they belong to, avoiding quantitative determinations of defined discrimination markers. Higher similarities between wheat and triticale cultivars, in comparison with rye species, may be due to the fact that most of the triticale genome structure originates from wheat species.
Sažetak
Sorte strnih žita: pšenice (Triticum aestivum), raži (Secale cereale) i tritikalea (Triticosecale), analizirane su primenom sistema gasne hromatografije sa maseno-spektrometrijskom detekcijom zbog specifičnog biohemijskog sastava ugljenih hidrata. Uzorci su prvo samleveni u brašno, a potom ekstrahovani 96%-tnim rastvorom etanola. Ekstrahovani disaharidi su zatim derivatizovani u odgovarajuće trimetilsilil-oksime i analizirani pomoću GC/EI-qMS uređaja. Bibliotečkim pretraživanjem Wiley 275 i NIST 14 baza masenih spektara četiri eluirajuća pika, sa specifičnim vremenima retencije (18,57 min, 18,80 min, 20,85 min, i 21,39 min), identifikovana su kao trimetilsilil-oksimi turanoze, melibioze i saharoze, i odabrana kao diskriminirajući faktori. Njihovo prisustvo, odnosno, odsustvo u određenim sortama strnih žita označeno je sa '1', odnosno, '0', kreirajući pritom binarne numeričke matrice, koje su podvrgnute multivarijantnoj analizi. Primenjene istraživačke tehnike analize podataka pružile su dobru osnovu za diferencijaciju pšenice, raži i tritikalea, bez obzira na specifičnu sortu kojoj pripadaju, izbegavajući pritom kvantitativnu analizu definisanih markera diskriminacije. Pretpostavlja se da uočena izraženija sličnost između sorti pšenice i tritikalea, u odnosu na raž, može biti rezultat činjenice da najveći deo strukture genoma sorti tritikalea vodi poreklo upravo od sorti pšenice.
|
|
|
References
|
|
3
|
Abdi, H., Williams, L.J. (2010) Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4): 433-459
|
|
3
|
Ačanski, M.M., Vujić, D.N. (2014) Comparing sugar components of cereal and pseudocereal flour by GC-MS analysis. Food Chemistry, 145: 743-748
|
|
|
Ares, G. (2014) Cluster analysis: Application in food science and technology. in: Granato D.; Ares G. [ed.] Mathematical and statistical methods in food science and technology, Chichester, UK: John Wiley & Sons, 103-121; 1st edition
|
|
|
Ares, G., Derndorfer, E., Baierl, A. (2013) Multidimensional scaling (MDS). in: Granato, Daniel [ed.] Mathematical and Statistical Methods in Food Science and Technology, Chichester, UK: Wiley-Blackwell, str. 175-186
|
|
|
Bradbury, A.G. W. (1990) Gas chromatography of carbohydrates in food. in: Gordon, Michael H. [ed.] Principles and Applications of Gas Chromatography in Food Analysis, Boston, MA: Springer Nature, str. 111-144
|
|
|
Castro-Puyana, M., Mendiola, J.A., Ibáñez, E., Herrero, M. (2013) MS-based Metabolomics Approaches for Food Safety, Quality, and Traceability. in: Cifuentes, Alejandro [ed.] Foodomics, Hoboken, NJ: Wiley-Blackwell, str. 453-470
|
|
|
Cuadros-Rodriguez, L., Ruiz-Samblas, C., Valverde-Som, L., Perez-Castano, E., Gonzales-Casado, A. (2016) Chromatographic fingerprinting: An innovative approach for food ‘identitation' and food authentication: A tutorial. Analitica Chimica Acta, 909: 9-23
|
|
|
Dinelli, G., Segura, C.A., di Silvestro, R., Marotti, I., Fu, S., Benedettelli, S., Ghiselli, L., Fernández, G.A. (2009) Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 1216(43): 7229-7240
|
|
|
Dinelli, G., Segura-Carretero, A., di Silvestro, R., Marotti, I., Arráez-Román, D., Benedettelli, S., Ghiselli, L., Fernadez-Gutierrez, A. (2011) Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. Journal of Chromatography A, 1218(42): 7670-7681
|
|
2
|
Doxastakis, G., Zafiriadis, I., Irakli, M., Marlani, H., Tananaki, C. (2002) Lupin, Soya and triticale addition to wheat flour dough's and their effect on rheological properties. Food Chemistry, 77,219-227
|
|
|
Gao, L., Ma, W., Chen, J., Wang, K., Li, J., Wang, S., Bekes, F., Appels, R., Yan, Y. (2010) Characterization and Comparative Analysis of Wheat High Molecular Weight Glutenin Subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. Journal of Agricultural and Food Chemistry, 58(5): 2777-2786
|
|
|
Gerhardt, K.O. (1990) Gas chromatography-mass spectrometry. in: Gordon, Michael H. [ed.] Principles and Applications of Gas Chromatography in Food Analysis, Boston, MA: Springer Nature, str. 59-85
|
|
|
Grane, A., Jach, A. (2014) Applications of principal component analysis (PCA) in food science and technology. in: Granato D.; Ares G. [ed.] Mathematical and statistical methods in food science and technology, Chichester, UK: John Wiley & Sons, 57-87; 1st edition
|
|
9
|
Hammer, O., Harper, D.A.T., Ryan, P.D. (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 1, 4-11
|
|
|
Lee, I., Yang, J. (2009) Common Clustering Algorithms. in: Comprehensive Chemometrics, Elsevier, str. 577-618
|
|
|
Ma, X.-F., Gustafson, J. P. (2008) Allopolyploidization-accommodated Genomic Sequence Changes in Triticale. Annals of Botany, 101(6): 825-832
|
|
|
Nyström, L., Paasonen, A., Lampi, A., Piironen, V. (2007) Total plant sterols, steryl ferulates and steryl glycosides in milling fractions of wheat and rye. Journal of Cereal Science, 45(1): 106-115
|
|
|
Pastor, K., Ačanski, M., Vujić, D., Bekavac, G., Milovac, S., Kravić, S. (2016) Rapid Method for Small Grain and Corn Flour Authentication Using GC/EI-MS and Multivariate Analysis. Food Analytical Methods, 9(2): 443-450
|
|
|
Pelillo, M., Ferioli, F., Iafelice, G., Marconi, E., Caboni, M.F. (2010) Characterisation of the phospholipid fraction of hulled and naked tetraploid and hexaploid wheats. Journal of Cereal Science, 51(1): 120-126
|
|
|
Ragaee, S., Abdelaal, E., Noaman, M. (2006) Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98(1): 32-38
|
|
|
Rakha, A., Åman P., Andersson, R. (2010) Characterisation of dietary fibre components in rye products. Food Chemistry, 119(3): 859-867
|
|
|
Rakha, A., Åman, P., Andersson, R. (2011) Dietary fiber in triticale grain: Variation in content, composition, and molecular weight distribution of extractable components. Journal of Cereal Science, 54(3): 324-331
|
|
1
|
Ruiz-Matute, A.I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M.L., Martínez-Castro, I. (2011) Derivatization of carbohydrates for GC and GC-MS analyses. Journal of Chromatography B, 879(17-18): 1226-1240
|
|
4
|
Varmuza, K., Filzmoser, P. (2008) Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton, FL: CRC Press Taylor & Francis Group
|
|
|
Venter, L., van Rensburg, P.J., Loots, D.T., Vosloo, A., Lindeque, J.Z. (2016) Untargeted Metabolite Profiling of Abalone Using Gas Chromatography Mass Spectrometry. Food Analytical Methods, 9(5): 1254-1261
|
|
|
|
|