Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[3]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 1 od 1  
2018, vol. 45, br. 1, str. 37-44
Antimikrobna aktivnost etarskih ulja na Listeria monocytogenes
aUniverzitet u Novom Sadu, Tehnološki fakultet, Srbija
bInstitut za prehrambene tehnologije, Novi Sad, Srbija

e-adresaruzica.tomicic@uns.ac.rs
Sažetak
Trovanje hranom izazvano bakterijom Listeria monocytogenes dovodi do 30% stope smrtnosti među pacijentima. Primena etarskih ulja (EOs) u prehrambenim proizvodima je pogodna strategija za kontrolu patogena i produženje njihovog roka trajanja smanjenjem nivoa mikroba. Cilj ove studije je bio da se proceni antimikrobni potencijal etarskih ulja (EOs) na L. monocytogenes. EOs korišćena u ovoj studiji bila su kim (Carum carvi), cimet (Cinnamomum zeylanicum), mirođija (Anethum graveolens), karanfilić (Syzygium aromaticum), nana (Menthae piperitae aetheroleum), crveni timijan (Thymus vulgaris), ruzmarin (Rosmarinus officinalis), začinska žalfija (Salvia officinalis), muskatna žalfija (Salvia sclarea) i vrtni čubar (Satureja hortensis). Minimalna inhibitorna koncentracija etarskih ulja je određena korišćenjem mikrodilucione metode. Prema dobijenim vrednostima MIC, sva etarska ulja su bila efikasna u inhibiciji sojeva L. monocytogenes, sa vrednostima MIC od 256 μg/ml do 4096 μg/ml. Rezultati su pokazali da je etarsko ulje cimeta ispoljilo najvišu antimikrobnu aktivnost na sojeve L. monocytogenes, dok su mirođija i nana bili najmanje efikasni. Pored toga, sprovedene su dve različite procedure u cilju ispitivanja uticaja antibiotika gentamicina i streptomicina na sojeve L. monocytogenes, korišćene su mikrodiluciona metoda i MIC Test Strip. Naši rezultati ukazuju da je referentni soj L. monocytogenes ATCC 19111 bio znatno osetljiviji na antibiotike u poređenju sa sojevima L. monocytogenes izolovanim iz mesa, naglašavajući veću efikasnost gentamicina u odnosu na streptomicin.
Reference
Aarestrup, F. (2012) Sustainable farming: get pigs off antibiotics. Nature, 486(7404): 465-466
Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014) Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1): 177-183
Al-Nabulsi, A.A., Osaili, T.M., Shaker, R.R., Olaimat, A.N., Jaradat, Z.W., Zain, E.N.A., Holley, R.A. (2015) Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiology, 46: 154-160
Bakkali, F., Averbeck, S., Averbec, D., Idaomar, M. (2008) Biological effects of essential oils: A review. Food and Chemical Toxicology, 46(2): 446
Bansod, S., Rai, M. (2008) Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World Journal of Medical Sciences, 3 (2): 81-88
Bertsch, D., Muelli, M., Weller, M., Uruty, A., Lacroix, C., Meile, L. (2014) Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental Listeria spp. isolates including Listeria monocytogenes. MicrobiologyOpen, 3(1): 118-127
Burt, S. (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94(3): 223-253
Chauhan, A.S., Negi, P.S., Ramteke, R.S. (2007) Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia, 78(7-8): 590-592
Chouhan, S., Sharma, K., Guleria, S. (2017) Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 1-23; 4
Conter, M., Paludi, D., Zanardi, E., Ghidini, S., Vergara, A., Ianieri, A. (2009) Characterization of antimicrobial resistance of foodborne Listeria monocytogenes. International Journal of Food Microbiology, 128(3): 497-500
Desai, M.A., Soni, K.A., Nannapaneni, R., Schilling, M. W., Silva, J.L. (2012) Reduction of Listeria monocytogenes in Raw Catfish Fillets by Essential Oils and Phenolic Constituent Carvacrol. Journal of Food Science, 77(9): M516-M522
Gandhi, M., Chikindas, M.L. (2007) Listeria: A foodborne pathogen that knows how to survive. International journal of food microbiology, 113(1): 1-15
Hammer, K.A., Carson, C.F., Riley, T.V. (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol, 86(6): 985-90
Hara, Y., Kobayashi, A., Sugita-Konishi, Y., Kondo, K. (2004) Antibacterial activity of plants used in cooking for aroma and taste. J Food Prot, 67(12): 2820-4
Klančnik, A., Guzej, B., Hadolin-Kolar, M., Abramovič, H., Smole-Možina, S. (2009) In vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. Journal of Food Protection, in press
Kramarenko, T., Roasto, M., Keto-Timonen, R., Mäesaar, M., Meremäe, K., Kuningas, M., Hörman, A., Korkeala, H. (2016) Listeria monocytogenes in ready-to-eat vacuum and modified atmosphere packaged meat and fish products of Estonian origin at retail level. Food Control, 67: 48-52
Li, Q., Sherwood, J.S., Logue, C.M. (2007) Antimicrobial resistance of Listeria spp. recovered from processed bison. Letters in Applied Microbiology, 44(1): 86-91
Liu, G., Ren, G., Zhao, L., Cheng, L., Wang, C., Sun, B. (2017) Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes. Food Control, 73: 854-861
Magalhães, L., Nitschke, M. (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control, 29(1): 138-142
Mazzarrino, G., Paparella, A., Chaves-López, C., Faberi, A., Sergi, M., Sigismondi, C., Compagnone, D., Serio, A. (2015) Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control, 50: 794-803
McLauchlin, J., Mitchell, R.T., Smerdon, W.J., Jewell, K. (2004) Listeria monocytogenes and listeriosis: A review of hazard characterisation for use in microbiological risk assessment of foods. Int J Food Microbiol, 92(1): 15-33
Morvan, A., Moubareck, C., Leclercq, A., Herve-Bazin, M., Bremont, S., Lecuit, M., Courvalin, P., le Monnier, A. (2010) Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from Humans in France. Antimicrobial Agents and Chemotherapy, 54(6): 2728-2731
Nazzaro, F., Fratianni, F., de Martino, L., Coppola, R., de Feo, V. (2013) Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6(12): 1451-1474
Neu, H.C. (1982) Mechanisms of bacterial resistance to antimicrobial agents, with particular reference to cefotaxime and other betalactam compounds. Reviews of Infectious Diseases, 4, 288-299
Rather, M.A., Dar, B.A., Dar, M.Y., Wani, B.A., Shah, W.A., Bhat, B.A., Ganai, B.A., Bhat, K.A., Anand, R., Qurishi, M.A. (2012) Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine, 19(13): 1185-1190
Shan, B., Cai, Y., Brooks, J.D., Corke, H. (2007) The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology, 117(1): 112
Tomičić, R.M., Čabarkapa, I.S., Vukmirović, Đ.M., Lević, J.D., Tomičić, Z.M. (2016) Influence of growth conditions on biofilm formation of Listeria monocytogenes. Food and Feed Research, vol. 43, br. 1, str. 19-24
White, D.G., Zhao, S., Simjee, S., Wagner, D.D., McDermott, P.F. (2002) Antimicrobial resistance of foodborne pathogens. Microbes and Infection, 4(4): 405-412
Zampini, I.C., Vattuone, M.A., Isla, M.I. (2005) Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts. Journal of Ethnopharmacology, 102(3): 450-456
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/FFR1801037T
objavljen u SCIndeksu: 13.07.2018.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka