Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:30
  • preuzimanja u poslednjih 30 dana:16

Sadržaj

članak: 1 od 1  
2018, vol. 45, br. 2, str. 129-137
Analiza smrznutog pilećeg mesa diferencijalnom skenirajućom kalorimetrijom
aUniverzitet u Banjoj Luci, Tehnološki fakultet, Republika Srpska, BiH
bUniverzitet u Istočnom Sarajevu, Tehnološki fakultet, Zvornik, Republika Srpska, BiH
cMeat industry DIM-DIM, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
dInstitut za prehrambene tehnologije, Novi Sad

e-adresadanica.savanovic@tf.unibl.org
Ključne reči: DSC; pileće meso; kristalizacija; topljenje; smrznuta voda; nesmrznuta voda
Sažetak
Rad analizira uticaj brzine hlađenja/zagrevanja pilećeg mesa (Pectoralis major) na temperature kristalizacije (Tcon, Tc, Tcend), temperature topljenja (Tmon, Tm, Tmend), entalpiju kristalizacije (ΔHc) i entalpiju topljenja (ΔHm). Uzorci pilećeg mesa skenirani su diferencijalnom skenirajućom kalorimetrijom (DSC), na pet brzina (2, 5, 10, 15, 20 °C/min od 20 °C do -40 °C, zatim od -40 °C do 20 °C. Rezultati statističke analize pokazuju da najveća brzina hlađenja (20 °C/min) značajno (p<0,05) utiče na srednju vrednost entalpije (-202,87 J/g) u odnosu na druge analizirane brzine. Brzina hlađenja/zagrevanja utiče na temperature kristalizacije (Tcon, Tc, Tcend) i temperature topljenja (Tmon, Tm, Tmend) (p<0,05). Brzina zagrevanja pilećeg mesa je u korelaciji sa Tm, Tmend i ΔTm (koeficijenti korelacije su bili 0,993, 0,998 i 0,998, respektivno).
Reference
Akköse, A., Aktaş, N. (2009) Determination of glass transition temperature of rainbow trout ( oncorhynchus mykiss ) and effects of various cryoprotective biopolymer blends on some chemical changes. Journal of Food Processing and Preservation, 33(5): 665-675
Akköse, A., Aktaş, N. (2008) Determination of glass transition temperature of beef and effects of various cryoprotective agents on some chemical changes. Meat Science, 80(3): 875-878
Association of Official Analytical Chemists (AOAC) (2006) Official methods of analysis. Gaithersburgs, MD, 18th Edition, Method 950.46
Bertram, H.C., Andersen, R.H., Andersen, H.J. (2007) Development in myofibrillar water distribution of two pork qualities during 10-month freezer storage. Meat Science, 75(1): 128-133
Bueno, M., Resconi, V.C., Campo, M. M., Cacho, J., Ferreira, V., Escudero, A. (2013) Effect of freezing method and frozen storage duration on odor-active compounds and sensory perception of lamb. Food Research International, 54(1): 772-780
Castro-Giráldez, M., Balaguer, N., Hinarejos, E., Fito, P.J. (2014) Thermodynamic approach of meat freezing process. Innovative Food Science & Emerging Technologies, 23: 138-145
Dahimi, O., Rahim, A.A., Abdulkarim, S.M., Hassan, M.S., Hashari, S.B.T. Z., Siti, M.A., Saadi, S. (2014) Multivariate statistical analysis treatment of DSC thermal properties for animal fat adulteration. Food Chemistry, 158: 132-138
Ding, X., Zhang, H., Wang, L., Qian, H., Qi, X., Xiao, J. (2015) Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles. Food Hydrocolloids, 47: 32-40
Falcaorodrigues, M., Moldaomartins, M., Beiraodacosta, M. (2007) DSC as a tool to assess physiological evolution of apples preserved by edibles coatings. Food Chemistry, 102(2): 475-480
Fasina, O. (2012) Thermophysical Properties of Channel Catfish at Freezing Temperatures. Journal of Agricultural Science and Technology B, 1287-1292; 12
Grujić, R., Petrović, L., Pikula, B., Amidžić, L. (1993) Definition of the optimum freezing rate-1. Investigation of structure and ultrastructure of beef M. longissimus dorsi frozen at different freezing rates. Meat Science, 33(3): 301-318
Hamdami, N., Monteau, J., Le, B.A. (2004) Thermophysical properties evolution of French partly baked bread during freezing. Food Research International, 37(7): 703-713
Jie, W., Lite, L., Yang, D. (2003) The correlation between freezing point and soluble solids of fruits. Journal of Food Engineering, 60(4): 481-484
Karthikeyan, J.S., Desai, K.M., Salvi, D., Bruins, R., Karwe, M.V. (2015) Effect of temperature abuse on frozen army rations. Part 1: Developing a heat transfer numerical model based on thermo-physical properties of food. Food Research International, 76: 595-604
Kiani, H., Sun, D. (2011) Water crystallization and its importance to freezing of foods: A review. Trends in Food Science & Technology, 22(8): 407-426
Marini, G.A., Bainy, E.M., Lenzi, M.K., Corazza, M.L. (2014) Freezing and thawing of processed meat in an industrial freezing tunnel. Acta Scientiarum. Technology, 36(2): 361
Matuda, T.G., Pessôa, F.P.A., Tadini, C.C. (2011) Experimental data and modeling of the thermodynamic properties of bread dough at refrigeration and freezing temperatures. Journal of Cereal Science, 53(1): 126-132
Miles, C.A., Mayer, Z., Morley, M.J., HousAEka, M. (1997) Estimating the initial freezing point of foods from composition data. International Journal of Food Science and Technology, 32(5): 389-400
Ostojić, S., Micić, D., Pavlović, M., Zlatanović, S., Kovačević, O., Simonović, B.R., Lević, L. (2014) The glass transition of osmotically dehydrated pork meat. Journal on Processing and Energy in Agriculture, vol. 18, br. 3, str. 100-102
Petrović, L., Grujić, R., Petrović, M. (1993) Definition of the optimal freezing rate-2. Investigation of the physico-chemical properties of beef M. longissimus dorsi frozen at different freezing rates. Meat Science, 33(3): 319-331
Rahman, M.S. (2006) State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science & Technology, 17(3): 129-141
Ribotta, P.D., Le, B.A. (2007) Thermo-physical and thermo-mechanical assessment of partially baked bread during chilling and freezing process. Journal of Food Engineering, 78(3): 913-921
Ribotta, P.D., Le, B.A. (2007) Thermo-physical assessment of bread during staling. LWT - Food Science and Technology, 40(5): 879-884
Savanovic, D., Grujic, R., Rakita, S., Torbica, A., Bozickovic, R. (2017) Melting and Crystallization Dsc Profiles of Different Types of Meat. Chemical Industry and Chemical Engineering Quarterly / CICEQ, vol. 23, br. 4, str. 473-481
Savanović, D., Grujić, R., Rakita, S., Gojković, V., Vujadinović, D. (2016) Differential scanning calorimetry analysis of frozen pork meat. u: XI Conference of Chemists, Technologists and Environmentalists of Republic of Srpska, University of Banja Luka, Faculty of Technology, Proceedings, pp. 285-294
Schubring, R. (1999) DSC studies on deep frozen fishery products. Thermochimica Acta, 337(1-2): 89-95
Simmons, A.L., Smith, K.B., Vodovotz, Y. (2012) Soy ingredients stabilize bread dough during frozen storage. Journal of Cereal Science, 56(2): 232-238
Soyer, A., Özalp, B., Dalmış, Ü., Bilgin, V. (2010) Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chemistry, 120(4): 1025-1030
Syamaladevi, R.M., Sablani, S.S., Tang, J., Powers, J., Swanson, B.G. (2010) Water sorption and glass transition temperatures in red raspberry (Rubus idaeus). Thermochimica Acta, 503-504: 90-96
Tolstorebrov, I., Eikevik, T.M., Bantle, M. (2014) A DSC study of phase transition in muscle and oil of the main commercial fish species from the North-Atlantic. Food Research International, 55: 303-310
Tomaszewska-Gras, J. (2013) Melting and crystallization DSC profiles of milk fat depending on selected factors. Journal of Thermal Analysis and Calorimetry, 113(1): 199-208
Voutila, L., Perero, J., Ruusunen, M., Jouppila, K., Puolanne, E. (2009) Muscle fiber properties and thermal stability of intramuscular connective tissue in porcine M. semimembranosus. Journal of the Science of Food and Agriculture, 89(15): 2527-2534
Xanthakis, E., Havet, M., Chevallier, S., Abadie, J., Le-Bail, A. (2013) Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innovative Food Science & Emerging Technologies, 20: 115-120
Yılmaz, M.T., Karakaya, M. (2009) Differential Scanning Calorimetry Analysis of Goat Fats: Comparison of Chemical Composition and Thermal Properties. Journal of the American Oil Chemists' Society, 86(9): 877-883
Zaidul, I.S.M., Absar, N., Kim, S.-J., Suzuki, T., Karim, A.A., Yamauchi, H., Noda, T. (2008) DSC study of mixtures of wheat flour and potato, sweet potato, cassava, and yam starches. Journal of Food Engineering, 86(1): 68-73
Zhu, S., Le, B.A., Ramaswamy, H.S. (2006) High-pressure differential scanning calorimetry: Comparison of pressure-dependent phase transition in food materials. Journal of Food Engineering, 75(2): 215-222
Zielbauer, B.I., Franz, J., Viezens, B., Vilgis, T.A. (2016) Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophysics, 11(1): 34-42
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/FFR1802129S
objavljen u SCIndeksu: 01.02.2019.
Creative Commons License 4.0

Povezani članci

J Proc Ener Agri (2019)
Korišćenje ultrazvučnog tretmana za vreme proizvodnje soka od jagode
Šic-Žlabur Jana, i dr.

Hrana i ishrana (2017)
Funkcionalne osobine testenine od spelte sa lanenim brašnom
Filipović Jelena, i dr.

Savr poljopriv tehnika (2011)
Posle ubirajuće tehnologije za voće i povrće u Srbiji
Marković Dragan, i dr.

prikaži sve [20]