- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:30
- preuzimanja u poslednjih 30 dana:16
|
|
2018, vol. 45, br. 2, str. 129-137
|
Analiza smrznutog pilećeg mesa diferencijalnom skenirajućom kalorimetrijom
Analysis of frozen chicken meat using differential scanning calorimetry
aUniverzitet u Banjoj Luci, Tehnološki fakultet, Republika Srpska, BiH bUniverzitet u Istočnom Sarajevu, Tehnološki fakultet, Zvornik, Republika Srpska, BiH cMeat industry DIM-DIM, Banja Luka, Republic of Srpska, Bosnia and Herzegovina dInstitut za prehrambene tehnologije, Novi Sad
e-adresa: danica.savanovic@tf.unibl.org
Sažetak
Rad analizira uticaj brzine hlađenja/zagrevanja pilećeg mesa (Pectoralis major) na temperature kristalizacije (Tcon, Tc, Tcend), temperature topljenja (Tmon, Tm, Tmend), entalpiju kristalizacije (ΔHc) i entalpiju topljenja (ΔHm). Uzorci pilećeg mesa skenirani su diferencijalnom skenirajućom kalorimetrijom (DSC), na pet brzina (2, 5, 10, 15, 20 °C/min od 20 °C do -40 °C, zatim od -40 °C do 20 °C. Rezultati statističke analize pokazuju da najveća brzina hlađenja (20 °C/min) značajno (p<0,05) utiče na srednju vrednost entalpije (-202,87 J/g) u odnosu na druge analizirane brzine. Brzina hlađenja/zagrevanja utiče na temperature kristalizacije (Tcon, Tc, Tcend) i temperature topljenja (Tmon, Tm, Tmend) (p<0,05). Brzina zagrevanja pilećeg mesa je u korelaciji sa Tm, Tmend i ΔTm (koeficijenti korelacije su bili 0,993, 0,998 i 0,998, respektivno).
Abstract
The paper analyses the effect of cooling/heating rate of chicken meat (Pectoralis major) on the crystallization temperature (Tcon, Tc, Tcend), melting temperature (Tmon, Tm, Tmend), crystallization enthalpy (ΔHc) and melting enthalpy (ΔHm). Chicken meat samples were scanned by differential scanning calorimetry (DSC) at five rates (2, 5, 10, 15, 20 °C/min), from 20 °C to -40 °C, and then from -40 °C to 20 °C.The results of the statistical analysis show that the fastest cooling rate (20 °C/min) significantly (p<0.05) affects the mean enthalpy value (-202.87 J/g) compared to other analysed rates. The cooling/heating rate affects the crystallization temperature (Tcon, Tc, Tcend) and melting temperature (Tmon, Tm, Tmend) (p<0.05). The heating rate of chicken meat highly correlates with Tm, Tmend and ΔTm (the correlation coefficients were 0.993, 0.998 and 0.998, respectively).
|
|
|
Reference
|
|
Akköse, A., Aktaş, N. (2009) Determination of glass transition temperature of rainbow trout ( oncorhynchus mykiss ) and effects of various cryoprotective biopolymer blends on some chemical changes. Journal of Food Processing and Preservation, 33(5): 665-675
|
|
Akköse, A., Aktaş, N. (2008) Determination of glass transition temperature of beef and effects of various cryoprotective agents on some chemical changes. Meat Science, 80(3): 875-878
|
17
|
Association of Official Analytical Chemists (AOAC) (2006) Official methods of analysis. Gaithersburgs, MD, 18th Edition, Method 950.46
|
|
Bertram, H.C., Andersen, R.H., Andersen, H.J. (2007) Development in myofibrillar water distribution of two pork qualities during 10-month freezer storage. Meat Science, 75(1): 128-133
|
|
Bueno, M., Resconi, V.C., Campo, M. M., Cacho, J., Ferreira, V., Escudero, A. (2013) Effect of freezing method and frozen storage duration on odor-active compounds and sensory perception of lamb. Food Research International, 54(1): 772-780
|
|
Castro-Giráldez, M., Balaguer, N., Hinarejos, E., Fito, P.J. (2014) Thermodynamic approach of meat freezing process. Innovative Food Science & Emerging Technologies, 23: 138-145
|
|
Dahimi, O., Rahim, A.A., Abdulkarim, S.M., Hassan, M.S., Hashari, S.B.T. Z., Siti, M.A., Saadi, S. (2014) Multivariate statistical analysis treatment of DSC thermal properties for animal fat adulteration. Food Chemistry, 158: 132-138
|
|
Ding, X., Zhang, H., Wang, L., Qian, H., Qi, X., Xiao, J. (2015) Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles. Food Hydrocolloids, 47: 32-40
|
|
Falcaorodrigues, M., Moldaomartins, M., Beiraodacosta, M. (2007) DSC as a tool to assess physiological evolution of apples preserved by edibles coatings. Food Chemistry, 102(2): 475-480
|
|
Fasina, O. (2012) Thermophysical Properties of Channel Catfish at Freezing Temperatures. Journal of Agricultural Science and Technology B, 1287-1292; 12
|
|
Grujić, R., Petrović, L., Pikula, B., Amidžić, L. (1993) Definition of the optimum freezing rate-1. Investigation of structure and ultrastructure of beef M. longissimus dorsi frozen at different freezing rates. Meat Science, 33(3): 301-318
|
|
Hamdami, N., Monteau, J., Le, B.A. (2004) Thermophysical properties evolution of French partly baked bread during freezing. Food Research International, 37(7): 703-713
|
1
|
Jie, W., Lite, L., Yang, D. (2003) The correlation between freezing point and soluble solids of fruits. Journal of Food Engineering, 60(4): 481-484
|
|
Karthikeyan, J.S., Desai, K.M., Salvi, D., Bruins, R., Karwe, M.V. (2015) Effect of temperature abuse on frozen army rations. Part 1: Developing a heat transfer numerical model based on thermo-physical properties of food. Food Research International, 76: 595-604
|
|
Kiani, H., Sun, D. (2011) Water crystallization and its importance to freezing of foods: A review. Trends in Food Science & Technology, 22(8): 407-426
|
|
Marini, G.A., Bainy, E.M., Lenzi, M.K., Corazza, M.L. (2014) Freezing and thawing of processed meat in an industrial freezing tunnel. Acta Scientiarum. Technology, 36(2): 361
|
|
Matuda, T.G., Pessôa, F.P.A., Tadini, C.C. (2011) Experimental data and modeling of the thermodynamic properties of bread dough at refrigeration and freezing temperatures. Journal of Cereal Science, 53(1): 126-132
|
|
Miles, C.A., Mayer, Z., Morley, M.J., HousAEka, M. (1997) Estimating the initial freezing point of foods from composition data. International Journal of Food Science and Technology, 32(5): 389-400
|
|
Ostojić, S., Micić, D., Pavlović, M., Zlatanović, S., Kovačević, O., Simonović, B.R., Lević, L. (2014) The glass transition of osmotically dehydrated pork meat. Journal on Processing and Energy in Agriculture, vol. 18, br. 3, str. 100-102
|
|
Petrović, L., Grujić, R., Petrović, M. (1993) Definition of the optimal freezing rate-2. Investigation of the physico-chemical properties of beef M. longissimus dorsi frozen at different freezing rates. Meat Science, 33(3): 319-331
|
1
|
Rahman, M.S. (2006) State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science & Technology, 17(3): 129-141
|
|
Ribotta, P.D., Le, B.A. (2007) Thermo-physical and thermo-mechanical assessment of partially baked bread during chilling and freezing process. Journal of Food Engineering, 78(3): 913-921
|
|
Ribotta, P.D., Le, B.A. (2007) Thermo-physical assessment of bread during staling. LWT - Food Science and Technology, 40(5): 879-884
|
|
Savanovic, D., Grujic, R., Rakita, S., Torbica, A., Bozickovic, R. (2017) Melting and Crystallization Dsc Profiles of Different Types of Meat. Chemical Industry and Chemical Engineering Quarterly / CICEQ, vol. 23, br. 4, str. 473-481
|
|
Savanović, D., Grujić, R., Rakita, S., Gojković, V., Vujadinović, D. (2016) Differential scanning calorimetry analysis of frozen pork meat. u: XI Conference of Chemists, Technologists and Environmentalists of Republic of Srpska, University of Banja Luka, Faculty of Technology, Proceedings, pp. 285-294
|
|
Schubring, R. (1999) DSC studies on deep frozen fishery products. Thermochimica Acta, 337(1-2): 89-95
|
|
Simmons, A.L., Smith, K.B., Vodovotz, Y. (2012) Soy ingredients stabilize bread dough during frozen storage. Journal of Cereal Science, 56(2): 232-238
|
|
Soyer, A., Özalp, B., Dalmış, Ü., Bilgin, V. (2010) Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chemistry, 120(4): 1025-1030
|
|
Syamaladevi, R.M., Sablani, S.S., Tang, J., Powers, J., Swanson, B.G. (2010) Water sorption and glass transition temperatures in red raspberry (Rubus idaeus). Thermochimica Acta, 503-504: 90-96
|
1
|
Tolstorebrov, I., Eikevik, T.M., Bantle, M. (2014) A DSC study of phase transition in muscle and oil of the main commercial fish species from the North-Atlantic. Food Research International, 55: 303-310
|
|
Tomaszewska-Gras, J. (2013) Melting and crystallization DSC profiles of milk fat depending on selected factors. Journal of Thermal Analysis and Calorimetry, 113(1): 199-208
|
|
Voutila, L., Perero, J., Ruusunen, M., Jouppila, K., Puolanne, E. (2009) Muscle fiber properties and thermal stability of intramuscular connective tissue in porcine M. semimembranosus. Journal of the Science of Food and Agriculture, 89(15): 2527-2534
|
|
Xanthakis, E., Havet, M., Chevallier, S., Abadie, J., Le-Bail, A. (2013) Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innovative Food Science & Emerging Technologies, 20: 115-120
|
|
Yılmaz, M.T., Karakaya, M. (2009) Differential Scanning Calorimetry Analysis of Goat Fats: Comparison of Chemical Composition and Thermal Properties. Journal of the American Oil Chemists' Society, 86(9): 877-883
|
|
Zaidul, I.S.M., Absar, N., Kim, S.-J., Suzuki, T., Karim, A.A., Yamauchi, H., Noda, T. (2008) DSC study of mixtures of wheat flour and potato, sweet potato, cassava, and yam starches. Journal of Food Engineering, 86(1): 68-73
|
|
Zhu, S., Le, B.A., Ramaswamy, H.S. (2006) High-pressure differential scanning calorimetry: Comparison of pressure-dependent phase transition in food materials. Journal of Food Engineering, 75(2): 215-222
|
|
Zielbauer, B.I., Franz, J., Viezens, B., Vilgis, T.A. (2016) Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophysics, 11(1): 34-42
|
|
|
|