|
Reference
|
|
Altarazi, S., Ammouri, M., Hijazi, A. (2018) Artificial neural network modeling to evaluate polyvinylchloride composites' properties. Computational Materials Science, 153: 1-9
|
|
AOAC International (2000) Official methods of analysis of AOAC International. Arlington, VA, USA, 17th Ed. Official Method 915.03, part B
|
|
Basheer, I., Hajmeer, M. (2000) Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1): 3-31
|
|
Cubeddu, A., Rauh, C., Delgado, A. (2014) Hybrid artificial neural network for prediction and control of process variables in food extrusion. Innovative Food Science & Emerging Technologies, 21: 142-150
|
|
Čolović, D., Čolović, R., Lević, J., Ikonić, B., Vukmirović, Đ., Lević, Lj. (2016) Linseed-sunflower meal co-extrudate as a functional additive for animal feed - extrusion optimization. Journal of Agricultural Science and Technology, 1761-1772; 18
|
|
Čolović, D., Lević, J., Čabarkapa, I., Čolović, R., Lević, Lj., Sedej, I. (2015) Stability of an extruded, linseed-based functional feed additive with the supplementation of vitamin E and carvacrol. Journal of Animal and Feed Sciences, 24(4): 348-357
|
3
|
Ćurčić, B.L., Pezo, L.L., Filipović, V.S., Nićetin, M.R., Knežević, V. (2014) Osmotic Treatment of Fish in Two Different Solutions-Artificial Neural Network Model. Journal of Food Processing and Preservation, 39(6): 671-680
|
|
Deng, L., Feng, B., Zhang, Y. (2018) An optimization method for multi-objective and multi-factor designing of a ceramic slurry: Combining orthogonal experimental design with artificial neural networks. Ceramics International, 44(13): 15918-15923
|
|
EFSA (2007) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to cyanogenic compounds as undesirable substances in animal feed. EFSA Journal, 5(2): 434
|
|
Fan, F.H., Ma, Q., Ge, J., Peng, Q.Y., Riley, W.W., Tang, S.Z. (2013) Prediction of texture characteristics from extrusion food surface images using a computer vision system and artificial neural networks. Journal of Food Engineering, 118(4): 426-433
|
3
|
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2): 179-186
|
3
|
Hu, X., Weng, Q. (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10): 2089-2102
|
2
|
Ivanov, D., Kokić, B., Brlek, T., Čolović, R., Vukmirović, Đ., Lević, J., Sredanović, S. (2012) Effect of microwave heating on content of cyanogenic glycosides in linseed. Ratarstvo i povrtarstvo, vol. 49, br. 1, str. 63-68
|
1
|
Kollo, T., von Rosen, D. (2005) Advanced Multivariate Statistics with Matrices. Dordrecht: Springer Nature
|
|
Kumar, A., Sharma, S. (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28(1): 1-10
|
|
Li, Y., Bridgwater, J. (2000) Prediction of extrusion pressure using an artificial neural network. Powder Technology, 108(1): 65-73
|
|
Montano, J.J., Palmer, A. (2003) Numeric sensitivity analysis applied to feedforward neural networks. Neural Computing & Applications, 12(2): 119-125
|
23
|
Montgomery, D.C. (1984) Design and analysis of experiments. New York: John Wiley & Sons, 2nd Ed
|
4
|
Pezo, L.L., Ćurčić, B.Lj., Filipović, V.S., Nićetin, M.R., Koprivica, G.B., Mišljenović, N.M., Lević, L.B. (2013) Artificial neural network model of pork meat cubes osmotic dehydration. Hemijska industrija, vol. 67, br. 3, str. 465-475
|
|
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S. (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2): 259-270
|
1
|
Shankar, T.J., Bandyopadhyay, S. (2007) Prediction of Extrudate Properties Using Artificial Neural Networks. Food and Bioproducts Processing, 85(1): 29-33
|
|
Sovány, T., Tislér, Z., Kristó, K., Kelemen, A., Regdon, G. (2016) Estimation of design space for an extrusion-spheronization process using response surface methodology and artificial neural network modelling. European Journal of Pharmaceutics and Biopharmaceutics, 106: 79-87
|
|
Sun, Z., Zhang, K., Chen, C., Wu, Y., Tang, Y., Georgiev, M.I., Zhang, X., Lin, M., Zhou, M. (2018) Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Applied Microbiology and Biotechnology, 102(1): 9-16
|
3
|
Taylor, B.J. (2006) Methods and Procedures for the Verification and Validation of Artificial Neural Networks. New York: Springer Science and Business Media
|
|
Trelea, I.C., Raoult-Wack, A.L., Trystram, G. (1997) Note: Application of neural network modelling for the control of dewatering and impregnation soaking process (osmotic dehydration) Nota: Aplicación del sistema de simulación de redes neurales para el control de la deshidratación osmótica. Food Science and Technology International, 3(6): 459-465
|
1
|
Turanyi, T., Tomlin, A.S. (2014) Analysis of Kinetics Reaction Mechanisms. Berlin: Springer
|
1
|
Wu, M., Li, D., Wang, L., Zhou, Y., Brooks, M., Chen, X., Mao, Z. (2008) Extrusion detoxification technique on flaxseed by uniform design optimization. Separation and Purification Technology, 61(1): 51-59
|
|
|
|