Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 1  
2019, vol. 46, br. 2, str. 161-169
Imobilizacija Aspergillus Niger celulaze na Lifetech TM nosače i primena u reakciji hidrolize lignocelulozne frakcije suncokretove sačme
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet, Srbija
bInstitut za higijenu i tehnologiju mesa, Beograd, Srbija

e-adresamstojanovic@tmf.bg.ac.rs
Projekat:
Razvoj novih inkapsulacionih i enzimskih tehnologija za proizvodnju biokatalizatora i biološki aktivnih komponenata hrane u cilju povećanja njene konkurentnosti, kvaliteta i bezbednosti (MPNTR - 46010)
Primena biotehnoloških metoda u održivom iskorišćenju nus-proizvoda agroindustrije (MPNTR - 31035)

Sažetak
Celulaze su enzimi koji katalizuju hidrolizu celuloze i u širokoj su primeni u brojnim granama industrije. U poslednje vreme, mogućnost njihove primene u tretiranju različitih opadnih agroindustrijskih sirovina u cilju dobijanja biogoriva intenzivno se istražuje. Da bi se povećale stabilnost i ekonomičnost njihove primene, potrebno je umesto slobodnog enzima koristiti imobilisane forme. U ovom istraživanju osam LifetechTM nosača različitih polarnosti, poroznosti i funkcionalnih grupa. testirano je za imobilizaciju celulaze producenta Aspergillus Niger. Najpogodniji nosač bio je na bazi metakrilata, sa primarnim amino grupama, C6 "dugom nožicom" i porama prečnika 60-120 nm - LifetechTM ECR8409F. Za ovaj nosač određeni su najznačajniji uslovi imobilizacije i nakon 3 sata na pH 6, pri početnoj koncentraciji proteina od 23,3 mg/g nosača dobijena je imobilisana celulaza aktivnosti 406 IU/g (sa karboksi metil celulozom kao supstratom). Ovaj preparat uspešno je primenjen u reakciji hidrolize lignocelulozne frakcije suncokretove sačme, koja prestavlja nusproizvod frakcionisanja suncokretove sačme pri dobijanju frakcija bogatih proteinima. Početne brzine reakcije i prinosi redukujućih šećera bili su nepromenjeni u odnosu na slobodan enzim, ukazujući da nije bilo značajnog uticaja difuzionih limitacija pri prilasku supstrata aktivnim centrima molekula A. Niger celulaze imobilisane na LifetechTM ECR8409F nosač.
Reference
Bautista, J., Parrado, J., Machado, A. (1990) Composition and fractionation of sunflower meal: Use of the lignocellulosic fraction as substrate in solid-state fermentation. Biological Wastes, 32(3), 225-233
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254
Cockburn, D.W., Clarke, A.J. (2011) Modulating the pH-activity profile of cellulase A from Cellulomonas fimi by replacement of surface residues. Protein Engineering Design and Selection, 24(5), 429-437
Ćorović, M., Mihailović, M., Banjanac, K., Carević, M., Milivojević, A., Milosavić, N., Bezbradica, D. (2017) Immobilization of Candida Antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess and Biosystems Engineering, 40(1), 23-34
Gokhale, A.A., Lu, J., Lee, I. (2013) Immobilization of cellulase on magnetoresponsive graphene nano-supports. Journal of Molecular Catalysis B: Enzymatic, 90, 76-86
Han, J., Wang, L., Wang, Y., Dong, J., Tang, X., Ni, L., Wang, L. (2018) Preparation and characterization of Fe 3 O 4 -NH 2 @4-arm-PEG-NH 2 , a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Biochemical Engineering Journal, 130, 90-98
Howard, R.L., Abotsi, E., van Rensburg, J.E.L., Howard, S.L. (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology, 2, 702-733
Ji, H., Pang, H., Zhang, R., Liao, B. (2008) Pretreatment and enzymatic hydrolysis of lignocellulose. Chemistry Bulletin / Huaxue Tongbao, 71, 329-335
Jørgensen, H., Kristensen, J.B., Felby, C. (2007) Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1(2), 119-134
Juturu, V., Wu, J.C. (2014) Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188-203
Kuhad, R.C., Gupta, R., Singh, A. (2011) Microbial cellulases and their industrial applications. Enzyme Research, 2011, 1-10
Kumar, R., Singh, S., Singh, O.V. (2008) Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377-391
Lima, J.S., Araújo, P.H.H., Sayer, C., Souza, A.A.U., Viegas, A.C., de Oliveira, D. (2017) Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess and Biosystems Engineering, 40(4), 511-518
Lin, S., Chen, W., Jiang, N., Fu, F. (2008) SiO2/alginate gel biocomposites for cellulase immobilization. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 25, 22-27
Lin, Y., Liu, X., Xing, Z., Geng, Y., Wilson, J., Wu, D., Kong, H. (2017) Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles for cellulase immobilization. Cellulose, 24(12), 5541-5550
Miao, X., Pi, L., Fang, L., Wu, R., Xiong, C. (2016) Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase. Biocatalysis and Biotransformation, 34(6), 272-282
Sánchez-Ramírez, J., Martínez-Hernández, J.L., Segura-Ceniceros, P., López, G., Saade, H., Medina-Morales, M.A., Ramos-González, R., Aguilar, C.N., Ilyina, A. (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: Application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess and Biosystems Engineering, 40(1), 9-22
Simon, P., Lima, J.S., Valério, A., de Oliveira, D., Araújo, P.H.H., Sayer, C., de Souza, A.A.U., Guelli, D.S.S.M.A.U. (2018) Cellulase immobilization on poly(methyl methacrylate) nanoparticles by miniemulsion polymerization. Brazilian Journal of Chemical Engineering, 35(2), 649-657
Telli-Okur, M., Saraçoǧlu, N.E. (2006) Ethanol production from sunflower seed hull hydrolysate by Pichia stipitis under uncontrolled pH conditions in a bioreactor. Turkish Journal of Engineering and Environmental Sciences, 30, 317-322
Vaz, R.P., de Souza, M.L.R., Ferreira, F.E.X. (2016) An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. Journal of Molecular Catalysis B: Enzymatic, 133, 127-135
Xu, J., Huo, S., Yuan, Z., Zhang, Y., Xu, H., Guo, Y., Liang, C., Zhuang, X. (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatalysis and Biotransformation, 29(2-3), 71-76
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/FFR1902161C
objavljen u SCIndeksu: 09.01.2020.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka