Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 1  
2020, vol. 47, br. 1, str. 13-22
Proizvodnja biobaktericida za kontrolu crne truleži kupusnjača - uticaj izvora azota
Univerzitet u Novom Sadu, Tehnološki fakultet

e-adresaida.zahovic@tf.uns.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Novom Sadu, Tehnološki fakultet) (MESTD - 451-03-68/2020-14/200134)

Ključne reči: proizvodnja biobaktericida; Bacillus subtilis; izvor azota; crna trulež; Xanthomonas campestris
Sažetak
Cilj ovog istraživanja bio je ispitivanje uticaja varijacije organskih (ekstrakt kvasca, sojino brašno i pepton) i neorganskih izvora azota (NaNO2, KNO3 i (NH4)2HPO4) u medijumu za proizvodnju biobaktericida primenom Bacillus subtilis ATCC 6633. Antibakterijska aktivnost protiv referentnog coja Xanthomonas campestris ATCC 13951 i sojeva Xanthomonas izolovanih sa listova kupusa, kelja i karfiola utvrđena je in vitro diskdifuzionom metodom. Statistička analiza pokazala je da i organski i neorganski izvori azota imaju statistički značajan uticaj na proizvodnju biobaktericida u primenjenim eksperimentalnim uslovima pri čemu je uticaj neorganskog azota izraženiji. Rezultati Dankanovog testa sugerišu da je antimikrobno delovanje najviše izraženo u medijumima sa i bezorganskog izvora azota, a koji kao neorganski izvor sadrže NaNO2. Dobijeni rezultati predstavljaju pogodnu osnovu za dalje unapređenje proizvodnje biobaktericida primenom referentnog soja B. subtilis.
Reference
Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Turck, M. (1966) Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45(4_ts): 493-496
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., Mahillon, J. (2019) Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 10: 302-302
da Silva, R.S., de Oliveira, M.M.G., de Melo, J.O., Blank, A.F., Corrêa, C.B., Scher, R., Fernandes, R.P.M. (2019) Antimicrobial activity of Lippiagracilis essential oils on the plant pathogen Xanthomonas campestris pv. campestris and their effect on membrane integrity. Pesticide Biochemistry and Physiology, 160: 40-48
Davis, D.A., Lynch, H.C., Varley, J. (1999) The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme and Microbial Technology, 25(3-5): 322-329
de Britto, A.J., Gracelin, D., Sebastian, S.R. (2011) Antibacterial activity of a few medicinal plants against Xanthomonas campestris and Aeromonas hydrophila. Journal of Biopesticides, 4 (1), 57-60
de Paula, K.M.A., de Carvalho, P.N., de Almeida, H.B. (2019) Bacillus velezensis GF267 as a multi-site antagonist for the control of tomato bacterial spot. Biological Control, 137: 104013-104013
El-Hendawy, H.H., Osman, M.E., Sorour, N.M. (2005) Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiological Research, 160(4): 343-352
Fernandes, P.A.V., de Arruda, I.R., Dos, S.A.F.A.B., de Araújo, A.A., Maior, A.M.S., Ximenes, E.A. (2007) Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Brazilian Journal of Microbiology, 38(4): 704-709
Fira, Đ., Dimkić, I., Berić, T., Lozo, J., Stanković, S. (2018) Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285: 44-55
Grahovac, J., Grahovac, M., Dodić, J., Bajić, B., Balaž, J. (2014) Optimization of cultivation medium for enhanced production of antifungal metabolites by Streptomyces hygroscopicus. Crop Protection, 65: 143-152
Huang, T.C., Chang, M.C. (1975) Studies on xanthobacidin, a new antibiotic from Bacillus subtilis active against Xanthomonas. Botanical Bulletin of Academia Sinica, 16: 137-148
Issazadeh, K., Rad, S.K., Zarrabi, S., Rahimibashar, M.R. (2012) Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. Carotovorum. African Journal of Microbiology Research, 6(7): 1615-1620
Khan, A.A.H., Naseem,, Rupa, L., Prathibha, B. (2011) Screening and potency evaluation of antifungal from soil isolates of Bacillus subtilis on selected fungi. Advanced Biotechnology, 10(7): 35-37
Larrea-Sarmiento, A., Dhakal, U., Boluk, G., Fatdal, L., Alvarez, A., Strayer-Scherer, A., Paret, M., Jones, J., Jenkins, D., Arif, M. (2018) Development of a genome-informed loop-mediated isothermal amplification assay for rapid and specific detection of Xanthomonas euvesicatoria. Scientific Reports, 8(1): 14298-14298
Leelasuphakul, W., Hemmanee, P., Chuenchitt, S. (2008) Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48(1): 113-121
Liu, T., Bessembayeva, L., Chen, J., Wei, L., Hua, Q. (2019) Development of an economical fermentation platform for enhanced ansamitocin P-3 production in Actinosynnema pretiosum. Bioresources and Bioprocessing, 6 (1), 1
Luna, C.L., Mariano, R.L.R., Souto-Maior, A.M. (2002) Production of a biocontrol agent for crucifers black rot disease. Brazilian Journal of Chemical Engineering, 19(2): 133-140
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., Toth, I., Salmond, G., Foster, G.D. (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6): 614-629
Meneses, E.A., Durango, D.L., García, C.M. (2009) Antifungal activity against postharvest fungi by extracts from Colombian propolis. Química Nova, 32(8): 2011-2017
Monteiro, L., de Mariano, R.L.R., Souto-Maior, A.M. (2005) Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Brazilian Archives of Biology and Technology, 48(1): 23-29
Peighamy-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., Behboudi, K. (2007) Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Communications in Agricultural and Applied Biological Sciences, 72 (4), 951-956
Radovanović, N., Milutinović, M., Mihajlovski, K., Jović, J., Nastasijević, B., Rajilić-Stojanović, M., Dimitrijević-Branković, S. (2018) Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Microbial Pathogenesis, 120: 71-78
Rončević, Z.Z., Grahovac, J.A., Vučurović, D.G., Dodić, S.N., Bajić, B.Ž., Tadijan, I.Ž., Dodić, J.M. (2014) Optimization of medium composition for the production of compounds effective against Xanthomonas campestris by Bacillus subtilis. Acta periodica technologica, br. 45, str. 247-258
Rončević, Z.Z., Zahović, I.E., Pajčin, I.S., Grahovac, M.S., Dodić, S.N., Grahovac, J.A., Dodić, J.M. (2019) Effect of carbon sources on xanthan production by Xanthomonas spp. isolated from pepper leaves. Food and Feed Research, vol. 46, br. 1, str. 11-21
Salerno, C.M., Sagardoy, M.A. (2003) Short communication: Antagonistic activity by Bacillus subtilis againts Xanthomonas campestris pv. glycines under controlled conditions. Spanish Journal of Agricultural Research, 1(2): 55-58
Suárez-Estrella, F., Arcos-Nievas, M.A., López, M.J., Vargas-García, M.C., Moreno, J. (2013) Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biological Control, 67(3): 509-515
Tabbene, O., Slimene, I.B., Djebali, K., Mangoni, M.L., Urdaci, M.C., Limam, F. (2009) Optimization of medium composition for the production of antimicrobial activity by Bacillus subtilis B38. Biotechnology Progress, 25(5): 1267-1274
Taylor, J.D., Conway, J., Roberts, S.J., Astley, D., Vicente, J.G. (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology, 92(1): 105-111
Vorhölter, F.J., Thias, T., Meyer, F., Bekel, T., Kaiser, O., Pühler, A., Niehaus, K. (2003) Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition. Journal of Biotechnology, 106(2-3): 193-202
Wise, C., Novitsky, L., Tsopmo, A., Avis, T.J. (2012) Production and Antimicrobial Activity of 3-Hydroxypropionaldehyde from Bacillus subtilis Strain CU12. Journal of Chemical Ecology, 38(12): 1521-1527
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/FFR2001013Z
objavljen u SCIndeksu: 04.07.2020.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0