Metrika

  • citati u SCIndeksu: [8]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 1  
2013, vol. 67, br. 3, str. 465-475
Model veštačke neuronske mreže za osmotsku dehidrataciju kockica svinjskog mesa
aInstitut za opštu i fizičku hemiju, Beograd
bUniverzitet u Novom Sadu, Tehnološki fakultet

e-adresavladaf@uns.ac.rs
Projekat:
Osmotska dehidratacija hrane - energetski i ekološki aspekti održive proizvodnje (MPNTR - 31055)

Sažetak
Jedna od potencijalno zanimljivih tehnika za očuvanje proizvoda sa niskim sadržajem vode i poboljšanim nutritivnim, senzornim i funkcionalnim svojstvima jeste proces osmotske dehidratacije. Proces osmotske dehidratacije je prihvatljiv metod sa aspekta uticaja na životnu sredinu, čiji je krajnji cilj očuvanje prvobitnih karakteristika gotovog proizvoda, kao i režim sušenja koji ne utiče negativno na materijal. Ovaj proces je privukao značajnu pažnju zbog niskih procesnih temperatura, male količine otpadnog materijala i niskih energetskih zahteva. Modeli veštačkih neuronskih mreža su nedavno u većoj meri počeli da se koriste za modelovanje i kontrolu procesa. Modeli neuronskih mreža su prepoznati kao dobar alat za dinamičko modelovanje jer ne zahtevaju parametre fizičkih modela, imaju mogućnost učenja rešenja problema iz serija eksperimentalnih podataka i mogu da obrađuju kompleksne nelinearne probleme sa interakcijama između odlučujućih promenljivih veličina. Usled kompleksnosti procesa osmotske dehidratacije, više autora je preporučilo modelovanje kinetike prenosa mase tokom procesa osmotske dehidratacije pomoću veštačkih neuronskih mreža. U ovom radu ispitivan je prenos mase pri osmotskoj dehidrataciji kockica svinjskog mesa (M. triceps brachii), dimenzija 1x1x1 cm3. Koristeći eksperimentalne rezultate ispitivan je uticaj različitih parametara, kao što su koncentracija melase šećerne repe (60-80% m/m), temperatura (20-50 °C) i vreme imerzije (1-5 h) na gubitak vlage, prirast suve materije, krajnji sadržaj suve materije i aktivnost vode. Razvijeno je pet neuronskih mreža za predviđanje gubitka vlage, prirasta suve materije, krajnjeg sadržaja suve materije i aktivnosti vode u procesu osmotske dehidratacije kockica svinjskog mesa. Ovi modeli su predvideli procesne izlazne veličine sa tačnošću izraženom preko stepena korelacije sa eksperimentalnim merenjima: r2 od 0,990 za prirast suve materije i 0,985 za gubitak vlage, 0,986 za aktivitet vode i 0,992 za finalni sadržaj suve materije. Širok opseg procesnih promenljivih veličina razmatranih u konstrukciji ovih modela, kao i njihova laka implementacija u tabelarno izračunavanje čini ih veoma praktičnim za projektovanje i kontrolu procesa.
Reference
Aliño, M., Grau, R., Fernández-Sánchez, A., Arnold, A., Barat, J.M. (2010) Influence of brine concentration on swelling pressure of pork meat throughout salting. Meat science, 86(3): 600-6
Association of Official Analytical Chemistry (2000) Official methods of analysis. Washington, USA
Azoubel, P.M., Murr, F.E.X. (2004) Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61(3): 291-295
Barat, J.M., Baigts, D., Aliño, M., Fernández, F.J., Pérez-García, V.M. (2011) Kinetics studies during NaCl and KCl pork meat brining. Journal of Food Engineering, 106(1): 102-110
Barat, J.M., Aliño, M., Fuentes, A., Grau, R., Romero, J.B. (2009) Measurement of swelling pressure in pork meat brining. Journal of Food Engineering, 93(1): 108-113
Basheer, I., Hajmeer, M. (2000) Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1): 3-31
Box, G.E.P., Behnken, D.W. (1960) Some new three level designs for the study of quantitative variables. Technometrics, 2 (4): 455
Castro-Giráldez, M., Fito, P.J., Fito, P. (2010) Non-equilibrium thermodynamic approach to analyze the pork meat (Longissimus dorsi) salting process. Journal of Food Engineering, 99(1): 24-30
Collignan, A., Bohuon, P., Deumier, F., Poligné, I. (2001) Osmotic treatment of fish and meat products. Journal of Food Engineering, 49(2-3): 153-162
Conway, J., Castaigne, F., Picard, G., Voxan, X. (1983) Mass trans-fer considerations in the osmotic dehydration of apples. Can. Inst. Food Sc. Tech. J., 16: 25-29
El-Aouar, A.A., Azoubel, P.M., Barbosa, J.L.Jr., Murr, F.E.X. (2006) Influence of the osmotic agent on the osmotic dehyd-ration of papaya (Carica Papaya L.). J. Food Eng., 75: 267-274
Filipčev, B., Lević, L., Bodroža-Solarov, M., Mišljenović, N., Koprivica, G. (2010) Quality Characteristics and Antioxidant Properties of Breads Supplemented with Sugar Beet Molasses-Based Ingredients. International Journal of Food Properties, 13(5): 1035-1053
Filipović, V.S., Ćurčić, B.Lj., Nićetin, M.R., Plavšić, D.V., Koprivica, G.B., Mišljenović, N.M. (2012) Prenos mase i mikrobiološki profil osmotski dehidriranog svinjskog mesa u dva različita rastvora. Hemijska industrija, vol. 66, br. 5, str. 743-748
García-Segovia, P., Mognetti, C., Andrés-Bello, A., Martínez-Monzó, J. (2010) Osmotic dehydration of Aloe vera (Aloe barbadensis Miller). Journal of Food Engineering, 97(2): 154-160
Hawkes, J., Flink, J.M. (1978) Osmotic concentration of fruit slices prior to freeze dehydration. Journal of Food Processing and Preservation, 2(4): 265-284
Jain, S.K., Verma, R.C., Murdia, L.K., Jain, H.K., Sharma, G.P. (2011) Optimization of process parameters for osmotic dehydration of papaya cubes. Journal of food science and technology, 48(2): 211-7
Karimi, F., Rafiee, S., Taheri-Garavand, A., Karimi, M. (2012) Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. Journal of the Taiwan Institute of Chemical Engineers, 43(1): 29-39
Kaymak-Ertekin, F., Sultanoğlu, M. (2000) Modelling of mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 46(4): 243-250
Koprivca, G., Mišljenović, N., Lević, Lj., Jevrić, L. (2010) Mass transfer kinetics during osmotic dehydration of plum in sugar beet molasses. J. Process. Energy Agr., 14: 27-31
Koprivica, G.B., Mišljenović, N.M., Lević, L.B., Pribiš, V.S. (2009) Promena nutritivnog i teksturalnog kvaliteta jabuke pri osmotskoj dehidrataciji u melasi šećerne repe i rastvorima saharoze. Acta periodica technologica, br. 40, str. 35-46
Lerici, C.R., Pinnavaia, G., Rosa, D., Bartolucci, L. (1985) Osmotic Dehydration of Fruit: Influence of Osmotic Agents on Drying Behavior and Product Quality. Journal of Food Science, 50(5): 1217-1219
Lertworasirikul, S., Saetan, S. (2010) Artificial neural network modeling of mass transfer during osmotic dehydration of kaffir lime peel. Journal of Food Engineering, 98(2): 214-223
Lević, L.B., Koprivica, G.B., Mišljenović, N.M., Filipčev, B.V., Šimurina, O.D., Kuljanin, T.A. (2008) Uticaj skroba kao jestive prevlake na proces osmotske dehidratacije mrkve u rastvorima saharoze i melasi šećerne repe. Acta periodica technologica, br. 39, str. 29-36
Magee, T.R.A., Hassaballah, A.A., Murphy, W.R. (1983) Internal mass transfer during osmotic dehydration of apple slices in sugar solutions. International Journal of Food Science and Technology, 7 (2), 147-152
Mohebbi, M., Shahidi, F., Fathi, M., Ehtiati, A., Noshad, M. (2011) Prediction of moisture content in pre-osmosed and ultrasounded dried banana using genetic algorithm and neural network. Food Bioprod. Process, 89: 362-366
Nićetin, M.R., Ćurčić, Lj.B., Filipović, V.S., Koprivica, G.B., Lević, Lj.M., Milašinović, Lj.M. (2012) Changes in nutritive quality of osmodehydrated pork meat in sugar beet molasses, ICoSTAF 2012, Szeged, Hungary. Review of Faculty of Engineering, Analecta Technica Szegedinensia, 3-4, 112-118
Ochoa-Martinez, C.I., Ayala-Aponte, A.A. (2007) Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks. LWT - Food Science and Technology, T 40: 638-645
Panagiotou, N.M., Karathanos, V.T., Maroulis, Z.B. (1999) Effect of osmotic agent on osmotic dehydration of fruits. Drying Technology, 17(1-2): 175-189
Panagiotou, N.M., Karathanos, V.T., Maroulis, Z.B. (1998) Mass transfer modelling of the osmotic dehydration of some fruits. International Journal of Food Science & Technology, 33(3): 267-284
Poligne, I., Broyart, B., Trystram, G., Collignan, A. (2002) Predic-tion of mass-transfer kinetics and product quality changes during a dehydration-impregnation-soaking process using artificial neural networks. Application to pork curing. LWT - Food Science and Technology, T 35: 748-756
Pribiš, V., Lević, L., Popović, M., Plavšić, O. (2005) Boja dimljenog vrata salamurenog sa dodatkom melase šećerne repe. u: 53. međunarodno savetovanje industrije mesa, Vrnjačka Banja
Puolanne, E., Halonen, M. (2010) Theoretical aspects of water-holding in meat. Meat Science, 86(1): 151-165
Rai, P., Majumdar, G.C., DasGupta, S., De, S. (2005) Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network. Journal of Food Engineering, 71(3): 273-281
Rai, P., Majumdar, G.C., DasGupta, S., De, S. (2005) Prediction of the viscosity of clarified fruit juice using artificial neural network: A combined effect of concentration and tem-perature. J. Food Eng., 68: 527-533
Raoult-Wack, A. (1994) Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 5(8): 255-260
Rastogi, N.K., Raghavarao, K.S.M.S., Niranjan, K. (1997) Mass transfer during osmotic dehydration of banana: Fickian diffusion in cylindrical configuration. Journal of Food Engineering, 31(4): 423-432
Rastogi, N.K., Raghavaro, K.S., Niranjan, K., Knorr, D. (2002) Recent developments in osmotic dehydration methods to enhance mass transfer. Trends in Food science and Technology, 13, str. 48-59
Rosa, M.D., Giroux, F. (2001) Osmotic treatments (OT) and problems related to the solution management. Journal of Food Engineering, 49(2-3): 223-236
Sablani, S.S., Kacimov, A., Pret, J., Mujumdar, A.S., Campo, A. (2005) Non-iterative estimation of heat transfer coef-ficients using artificial neural network models. Int. J. Heat Mass Transf, 48: 665-679
Salvatori, D., Andrés, A., Chiralt, A., Fito, P. (1999) Osmotic dehydration progression in apple tissue I: spatial distribution of solutes and moisture content. Journal of Food Engineering, 42(3): 125-132
Santchurn, S.J., Collignan, A., Trystram, G. (2007) Impact of solute molecular mass and molality, and solution viscosity on mass transfer during immersion of meat in a complex solution. Journal of Food Engineering, 78(4): 1188-1201
Shi, J., Maguer, M. (2002) Osmotic dehydration of foods: Mass transfer and modeling aspects. Food Reviews International, vol. 18, br. 4, str. 305-335
Spiazzi, E., Mascheroni, R.H. (1997) Mass transfer model for osmotic dehydration of fruits and vegetables -1 Development of the Simulation Model. Journal of Food Engineering, 34, str. 387-410
Svrzić, G., Lević, L., Pribiš, V., Popović, M., Bošnjaković, L. (2006) Mogućnost korišćenja melase šećerne repe u proizvodnji fino usitnjenih barenih kobasica. Časopis za procesnu tehniku i energetiku u poljoprivredi / PTEP, vol. 10, br. 1-2, str. 36-38
Torreggiani, D. (1993) Osmotic dehydration in fruit and vegetable processing. Food Research International, 26(1): 59-68
Toupin, C.J., Marcotte, M., le Maguer, M. (1989) Osmotically induced mass transfer in plant storage tissues: A mathematical model, part 1. J. Food Eng, 10, 13-38
Trelea, I.C., Raoult-Wack, A.L., Trystram, G. (1997) Note: Application of neural network modeling for the control of dewatering and impregnation soaking process (osmotic dehydration). Food Sci. Technol. Int, 3, 459-465
Tsironi, T., Salapa, I., Taoukis, P. (2009) Shelf life modelling of osmotically treated chilled gilthead seabream fillets. Innovative Food Science & Emerging Technologies, 10(1): 23-31
Waliszewski, K., Cortes, H.D., Pardio, V.T., Garcia, M.A. (1999) Color parameter changes in banana slices during osmotic dehydration. Drying Technology, 17(4-5): 955-960
Welti-Chanes, J., Vergara-Balderas, F., Bermúdez-Aguirre, D. (2005) Transport phenomena in food engineering: basic concepts and advances. Journal of Food Engineering, 67(1-2): 113-128
Yao, Z., le Maguer, M. (1996) Mathematical modelling and simulation of mass transfer in osmotic dehydration processes. Part I: Conceptual and mathematical models. Journal of Food Engineering, 29(3-4): 349
Zenoozian, S., Devahastin, S. (2009) Application of wavelet transform coupled with artificial neural network for predicting physicochemical properties of osmotically dehydrated pumpkin. Journal of Food Engineering, 90(2): 219-227
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.2298/HEMIND120529082P
objavljen u SCIndeksu: 02.09.2013.

Povezani članci

Acta periodica technologica (2013)
Osmotska dehidracija kockica svinjskog mesa - metoda odzivne površine
Ćurčić Biljana Lj., i dr.

Hemijska industrija (2012)
Prenos mase i mikrobiološki profil osmotski dehidriranog svinjskog mesa u dva različita rastvora
Filipović Vladimir S., i dr.

Acta periodica technologica (2010)
Osmotska dehidratacija mrkve u melasi šećerne repe - kinetika prenosa mase
Koprivica Gordana B., i dr.

prikaži sve [131]