Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:1
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 1  
2020, vol. 148, br. 7-8, str. 440-446
Promena snage površinskog elektromiograma pri zadržavanju daha
aUniverzitet Singidunum, Tehnički fakultet, Beograd + Istraživačko-razvojni institut "Centar za unapređenje životnih aktivnosti", Beograd
bUniverzitet Singidunum, Tehnički fakultet, Beograd
cVojnomedicinska akademija, Centar za kliničku farmakologiju, Beograd
dIstraživačko-razvojni institut "Centar za unapređenje životnih aktivnosti", Beograd + Institut za eksperimentalnu fonetiku i patologiju govora, Beograd
eUniverzitet u Beogradu, Fakultet sporta i fizičkog vaspitanja
fUniverzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd

e-adresamirko11ostojic@gmail.comt
Projekat:
This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Ključne reči: površinski elektromiogram; zadržavanje daha; sternokleidomastoidni mišić
Sažetak
Uvod/Cilj Brojne studije površinskih elektromiografskih (sEMG) signala kao odgovor na promene različitih parametara disanja, naročito na sternokleidomastoidnim mišićima (SCM) i dijafragmi, ukazale su na obećavajuće prednosti njihovog istovremenog praćenja sa mogućim primenama u analizi njihove korelacije. Ovo je motivisalo detaljnu statističku analizu prosečne snage (PAV) na sEMG signalima tokom produženog zadržavanja daha, istovremeno merenih u oblastima SCM i dijafragme. Metode Fiziološka metoda zadržavanja daha primenjena je na 30 zdravih dobrovoljaca, i to sEMG merenjem oblasti SCM i dijafragme pre, tokom i posle vežbe zadržavanja daha. Svi ispitanici su sedeli u uspravnom položaju, a nosnice su bile zatvorene desnim kažiprstom i palcem tokom zadržavanja daha. Radi sinhronizacije zapisa, korisnik bi pritisnuo poseban prekidač drugom rukom na početku i na kraju eksperimenta zadržavanja daha. Prosečna snaga sEMG (PAV) izmerena je za svaki signalni prozor od 500 ms. Rezultati PAV ostaje nepromenjen pre i tri sekunde posle vežbe. Tokom završetka zadržavanja daha, bar jedna oblast imala je PAV priraštaj od minimalno 91%. Studentov t-test između signala SCM pokazuje značajnu razliku od p < 0,001, dok kod dijafragme izostaje. Mada su rezultati pokazali da je SCM dominantna oblast u 76,67% slučajeva, ekskluzivni PAV priraštaj u oblasti dijafragme otkriven je u tačno pet slučajeva (16,67% ukupnog broja ispitanika). Zaključak Naše istraživanje vodi zaključku o neophodnosti istovremenog merenja SCM i dijafragme kako bi se uočile dominantne promene sEMG tokom zadržavanja daha. Fiziološki odgovor respiratornog centra može se primetiti približno udvostručenim PAV u jednoj od oblasti SCM ili dijafragme.
Reference
Afsharipour, B., Soedirdjo, S., Merletti, R. (2019) Two-dimensional surface EMG: The effects of electrode size, interelectrode distance and image truncation. Biomedical Signal Processing and Control, 49: 298-307
Alessio, S.M. (2016) Digital Signal Processing and Spectral Analysis for Scientists, Signals and Communication Technology. New York-Cham: Springer, 900-900
Basso-Vanelli, R.P., di Lorenzo, V.A.P., Ramalho, M., Labadessa, I.G., Regueiro, E.M.G., Jamami, M., Costa, D. (2018) Reproducibility of inspiratory muscle endurance testing using PowerBreathe for COPD patients. Physiotherapy Research International, 23(1): e1687-e1687
Cabral, E.E.A., Fregonezi, G.A.F., Melo, L., Basoudan, N., Mathur, S., Reid, D.W. (2018) Surface electromyography (sEMG) of extradiaphragm respiratory muscles in healthy subjects: A systematic review. Journal of Electromyography and Kinesiology, 42: 123-135
Costa, I.P., Politti, F., Cahalin, L.P., de Carvalho, E.F.T., Costa, D.P., Corrêa, J.C.F., Vieira, R.P., Oliveira-Junior, M.C., de Angelis, K., Stirbulov, R., Dal, C.S. (2019) Acute Effects Using Light-Emitting Diode Therapy (LEDT) for Muscle Function during Isometric Exercise in Asthma Patients: A Pilot Study. BioMed Research International, 2019: 1-10
Devaprakash, D., Weir, G.J., Dunne, J.J., Alderson, J.A., Donnelly, C.J. (2016) The influence of digital filter type, amplitude normalisation method, and co-contraction algorithm on clinically relevant surface electromyography data during clinical movement assessments. Journal of Electromyography and Kinesiology, 31: 126-135
Dos, R.I.M.M., Ohara, D.G., Januário, L.B., Basso-Vanelli, R.P., Oliveira, A.B., Jamami, M. (2019) Surface electromyography in inspiratory muscles in adults and elderly individuals: A systematic review. J Electromyogr Kinesiol, 44: 139-55
Hall, J.E. (2015) Guyton and Hall Textbook of Medical Physiology. Philadelphia: Saunders, 13th ed. p. 1168
Holcman, D., Schuss, Z. (2018) Asymptotics of Elliptic and Parabolic PDEs: And their Applications in Statistical Physics, Computational Neuroscience, and Biophysics. Cambridge: Churchill College, p. 444
Ingle, V.K., Proakis, J.G. (2011) Digital Signal Processing using MATLAB. Stamford, CT, USA: Cengage Learning, 3rd ed. p. 624
Jenkins, N.D.M., Housh, T.J., Bergstrom, H.C., Cochrane, K.C., Hill, E.C., Smith, C.M., Johnson, G.O., Schmidt, R.J., Cramer, J.T. (2016) Basic reporting and interpretation of surface EMG amplitude and mean power frequency: A reply to Vitgotsky, Ogborn, and Phillips. European Journal of Applied Physiology, 116(3): 659-661
Kim, E.B. (2019) Ganong's Review of Medical Physiology. New York: McGraw-Hill Education, 26th ed. 752-752
Kovačević, B., Milosavljević, M.M., Veinović, M., Marković, M. (2017) Robust Digital Processing of Speech Signals. New York: Springer International Publishing, 224-224
Lejun, W., Qineng, S., Guoqiang, M., Mingxin, G., Wenxin, N., Jun, Q. (2020) Pedaling Performance Changing of Elite Cyclists is Mainly Determined by the Fatigue of Hamstring and Vastus Muscles during Repeated Sprint Cycling Exercise. Biomed Res Int, 2020: 7294820-7294820
Luiso, D., Villanueva, J.A., Belarte-Tornero, L.C., Fort, A., Blázquez-Bermejo, Z., Ruiz, S., Farré, R., Rigau, J., Martí-Almor, J., Farré, N. (2020) Surface respiratory electromyography and dyspnea in acute heart failure patients. PLoS One, 15(4): e0232225-e0232225
Maoz, U., Yaffe, G., Koch, C., Mudrik, L. (2019) Neural precursors of decisions that matter: An ERP study of deliberate and arbitrary choice. eLife, 8: 39787-39787
Merletti, R., Muceli, S. (2019) Tutorial. Surface EMG detection in space and time: Best practices. Journal of Electromyography and Kinesiology, 49: 102363-102363
Milenković, S., Belojević, G., Paunović, K., Davidović, D. (2019) Historical aspects of left-handedness. Srpski arhiv za celokupno lekarstvo, vol. 147, br. 11-12, str. 782-785
Ostojić, M. (2018) Umeće disanja. Belgrade: Pesić & Sinovi, p. 329
Ostojić, M., Milosavljević, M. (2019) The Possibility of Electromyography Measuring as The Answer to Breath Holding. u: The International Scientific Conference - Sinteza 2019, Proceedings of, Singidunum University, 307-319
Rakhimov, A. (2014) Normal Breathing: The Key to Vital Health. Createspace Independent Pub, 486-486
Ramsook, A.H., Molgat-Seon, Y., Schaeffer, M.R., Wilkie, S.S., Camp, P.G., Reid, D.W., Romer, L.M., Guenette, J.A. (2017) Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men. Journal of Applied Physiology, 122(5): 1267-1275
Schetteler, K.F. (2018) The aEEG Booklet. Duesseldorf: Nihon Kohden, Available from: https://www.nihonkohden.com
Segizbaeva, M.O., Donina, Zh.A., Timofeev, N.N., Korolyov, Yu.N., Golubev, V.N., Aleksandrova, N.P. (2013) EMG Analysis of Human Inspiratory Muscle Resistance to Fatigue During Exercise. Adv Exp Med Biol, 788: 197-205
Segizbaeva, M.O., Timofeev, N.N., Donina, Zh.A., Kur'yanovich, E.N., Aleksandrova, N.P. (2014) Effects of Inspiratory Muscle Training on Resistance to Fatigue of Respiratory Muscles During Exhaustive Exercise. Adv Exp Med Biol, 840: 35-43
Sekiguchi, H., Tamaki, Y., Kondo, Y., Nakamura, H., Hanashiro, K., Yonemoto, K., Moritani, T., Kukita, I. (2018) Surface electromyographic evaluation of the neuromuscular activation of the inspiratory muscles during progressively increased inspiratory flow under inspiratory-resistive loading. Physiology International, 105(1): 86-99
Trevisan, M.E., Boufleur, J., Soares, J.C., Haygert, C.J.P., Ries, L.G.K., Corrêa, E.C.R. (2015) Diaphragmatic amplitude and accessory inspiratory muscle activity in nasal and mouth-breathing adults: A cross-sectional study. Journal of Electromyography and Kinesiology, 25(3): 463-468
van Leuteren, R.W., Hutten, G.J., de Waal, C.G., Dixon, P., van Kaam, A.H., de Jongh, F.H. (2019) Processing transcutaneous electromyography measurements of respiratory muscles: A review of analysis techniques. Journal of Electromyography and Kinesiology, 48: 176-186
Vigotsky, A.D., Halperin, I., Lehman, G.J., Trajano, G.S., Vieira, T.M. (2018) Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front Physiol, 8: 985-985
Walterspacher, S., Pietsch, F., Walker, D.J., Röcker, K., Kabitz, H.J. (2018) Activation of respiratory muscles during respiratory muscle training. Respiratory Physiology & Neurobiology, 247: 126-132
Young, H.H. (2017) Searching for the neural signatures of conscious veto: A novel approach on the Libet paradigm using Template Matching Analysis. Auckland: University of Auckland, Available from: http://hdl.handle.net/2292/37371
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.2298/SARH191118037O
objavljen u SCIndeksu: 02.09.2020.