- citati u SCIndeksu: [1]
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:7
- preuzimanja u poslednjih 30 dana:7
|
|
2018, vol. 46, br. 4, str. 636-643
|
Upravljanje naponima u šinama na železničkim mostovima
Management of stresses in the rails on railway bridges
aUniverzitet u Beogradu, Građevinski fakultet bMoscow State University of Civil Engineering, Russia
e-adresa: nmirkovic@grf.bg.ac.rs
Ključne reči: railway; continuous welded rail; vehicle/track/bridge interaction; fatigue design; rail stressreduction
Sažetak
Ovaj rad analizira napone u kontiunualno zavarenim šinama na mostovima, uključujući aspekt zamora šinskog čelika. Pored toga, ispituje se mogućnost izostavljanja šinskih dilatacionih sprava, uz istovremeno iskorišćenje kapaciteta dozvoljenih napona za profil šine 60E1. U skladu sa tim, kritički je analizirana opšta primena dozvoljenih vrednosti napona pritiska i zatezanja koje su propisane u važećim evropskim standardima. Rad uključuje aspekte posebne primene propisanih vrednosti napona za železničke mostove u Srbiji. U radu je predstavljen opšti algoritam za smanjenje napona usled interakcije vozilo/kolosek/most, koji je razvijen od strane autora. Ovaj algoritam uključuje sve bitne parametre konstrukcije mosta i gornjeg stroja železničke pruge, kao i uticaj klimatskih uslova i projekta trase pruge.
Abstract
This paper analyses the stresses in continuous welded rails on bridges including the aspect of fatigue of rail steel. Furthermore, it examines the possibility to avoid rail expansion joints, while simultaneously exploiting the permissible stress capacity of the rail profile 60E1. Accordingly, general application of permissible values of pressure and tensilestresses prescribed in the current European standards was critically analysed. Paper includes specific application aspects of the prescribed stress values for railway bridges in Serbia. General algorithm for reducing the stresses due to the vehicle/track/bridge interaction, which is presented in this paper, was developed by the authors. This algorithm includes all essential parameters of the bridge structure and railway superstructure, as well as the influence of climate conditions and railway route design.
|
|
|
Reference
|
|
*** (2002) Railway applications: Track: Test methods for fastening systems: Part 1: Determination of longitudinal rail restraint. Brussel, CEN/TC256: EN 13146-1
|
|
*** (2008) CEN/TC250:EN1994-2:2005/AC:2008: Eurocode 4: Design of composite steel and concrete structures: General rules and rules for bridges. Brussels, Part 2
|
|
*** (2008) CEN/TC 250:EN 1992-2:2005/AC:2008: Eurocode 2: Design of concrete structures: Concrete bridges: Design and detailing rules. Brussels
|
|
*** (2009) Eurocode 3: Design of steel structures - part 2: Steel bridges. Brussels, CEN/TC 250: EN 1993-2:2006/AC:2009
|
|
*** (2003) Eurocode 1: Actions on structures - part 2: Traffic loads on bridges. Brussels, CEN/TC 250: EN 1991-2:2003
|
|
*** (2010) Eurocode: Basis of structural design. Brussels, CEN/TC 250: EN 1990:2002/A1: 2005/AC
|
|
CEN (2017) EN 13674-1: 2011 + A1:2017: Raillway applications, Track, Rail, Vignole railway rails 46kg/m and above. Brussels
|
|
Chatkeo, Y. (1985) Die stabilitat des eisenbahngleise-simbogenmitengenhalbmessernbeihohen axial-druckkraften. München: Technische Universität, Dissertation
|
1
|
Ćirović, V., Smiljanić, D., Aleksendrić, D. (2014) Neuro-genetic optimization of disc brake performance at elevated temperatures. FME Transactions, vol. 42, br. 2, str. 142-149
|
|
DIN (2003) Fachtbericht 101: Einwirkungen auf Bruecken. Deutschland
|
|
European Rail Research Institute (1999) ERRI D 202/RP 12: Verbesserungder kenntnis der kräfteimlücken losegleis (einschließlichweichen): Schlußbericht. Utrecht
|
|
Freystein, H. (2012) Untersuchungenzuden zulässigen-zusätzlichenschienenspannungenausinteraktionglei s/brücke. Berlin: Technische Universität, Dissertation
|
1
|
Freystein, H. (2010) Interaktion Gleis/Brücke - Stand der Technik und Beispiele. Stahlbau, 79(3): 220-231
|
1
|
Jocković, S., Vukićević, M. (2017) Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule. Computers and Geotechnics, 83: 16-29
|
|
Meier, H. (1934) Die Verwerfungsgefahrbeimlucken-losenvollbahngleis und ihrebeseitigung. München: Technische Universität, Dissertation
|
|
Popović, Z., Lazarević, L., Vilotijević, M., Mirković, N. (2017) Interaction Phenomenon Between Train, Track and Bridge. u: Murgul, Vera; Popovic, Zdenka [ur.] Energy Management of Municipal Transportation Facilities and Transport, Cham: Springer Nature America, Inc, str. 3-11
|
|
Puharić, M., Matić, D., Linić, S., Ristić, S., Lučanin, V. (2014) Determination of braking force on the aerodynamic brake by numerical simulations. FME Transactions, vol. 42, br. 2, str. 106-111
|
|
Ruge, P., Trinks, C., Muncke, M., Schmälzlin, G. (2004) Längskraftbeanspruchung von durchgehend geschweißten Schienen auf Brücken für Lastkombinationen. Bautechnik, 81(7): 537-548
|
|
Schmälzlin, G., Schajer, G. (2013) Practical residual stress measurement methods. John Wiley & Sons
|
|
The European Commission (2011) Technical specification for interoperability relating to the 'infrastructure' subsystem of the trans-European conventional rail system. Official Journal of the European Union
|
|
UIC (2001) Code 774-3: Track/bridge interaction - recommendations for calculations. Paris
|
|
UIC (2006) Code 776-1: Loads to be considered in railway bridge design. Paris
|
|
UIC (2009) Code 776-2: Design requirements for railbridges based on interaction phenomena between train, track and bridge. Paris
|
|
Wenner, M., Lippert, P., Plica, S., Marx, S. (2016) Längskraftabtragung auf Eisenbahnbrücken. Bautechnik, 93(7): 470-481
|
|
|
|