- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:2
- preuzimanja u poslednjih 30 dana:0
|
|
2008, vol. 7, br. 26, str. 36-42
|
Razvoj adaptivnih sistema elektronskog obrazovanja zasnovan na stilovima učenja
Developing adaptive e-education system based on learning styles
Univerzitet u Beogradu, Fakultet organizacionih nauka
Sažetak
U ovom radu je prezentovan pristup personalizaciji sistema elektronskog učenja zasnovan na data mining-u. U poslednje vreme, brojna istraživanja pokazuju da se velik broj elektronskih kurseva završava neuspešno, kao posledica primene koncepta "univerzalne veličine" gde se isti statički sadržaj prezentuje svim studentima. Za razvoj efektivne platforme za elektronsko učenje neophodno je utvrditi ciljeve, preferencije, motivaciju i potrebe svakog studenta. Primarni cilj ovog istraživanja je personalizacija sistema elektronskog učenja, tako da se u centar interesovanja stavljaju korisnički ciljevi, predznanja, stilovi učenja i zahtevi za performansama. Sistemi za upravljanje učenjem (LMS) generišu i akumuliraju veliku količinu informacija, pa se primena tehnika data mining-a izdvaja kao dobar pristup za otkrivanje potreba i preferenci studenata i prilagođavanje sistema za e-obrazovanje. U radu su identifikovane i prikazane osnovne faze i zahtevi ovog procesa. Kao dodatak, izvršeno je istraživanje koje se odnosi na primenu tehnike klasterovanja u sistemu za daljinsko obrazovanje u Laboratoriji za elektronsko poslovanje Fakulteta organizacionih nauka u Beogradu.
Abstract
In this paper, we present an approach to e-learning personalization based on data mining. Currently, many researches show that high number of e-learning courses resulted in failure due to "universal size" concept as the same static content is presented to all students and objective is getting the learner online and 'into' the technology. Developing effective e-learning framework depends on finding sophisticated means for discovering students' goals, preknowledge, needs and motivation. Primary goal of the research is to perform personalizing of distance education system, according to students' learning styles, goals, background, presentation preferences and performance requirements. Learning Management Systems (LMS) generate lot of data and much information can be discovered using data mining techniques. In order to improve process of using data mining tools and techniques in e-learning systems, we have identified its main phases and requirements. In addition, research that dealt with appliance of clustering technique in a real e-learning system was carried out. Data were collected from the courses within distance education system in Laboratory for E-Business on the Faculty of Organizational Sciences in Belgrade.
|
|
|
Reference
|
|
Aroyo, L., Dolog, P., Houben, G.J., Kravcik, M., Naeve, A., Nilsson, M., Wild, F. (2006) Interoperability in personalized adaptive learning. Educational Technology and Society, 9, (2), 4-18
|
3
|
Brusilovsky, P. (2001) Adaptive hypermedia. User Modeling and User Adapted Interaction, 11, (1/2), 87-110, A. Kobsa (ed.), Ten Year Anniversary Issue
|
3
|
Brusilovsky, R. (1996) Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, vol. 6, br. 2-3, str. 87-129
|
|
Carmona, C., Castillo, G., Millan, E. (2007) Discovering student preferences in e-learning. u: International Workshop on Applying Data Mining in e-Learning (ADML'07)
|
|
Derry, S.J., Potts, M.K. (1998) How tutors model students: A study of personal constructs in adaptive tutoring. American Educational Research Journal, 35,(1), str. 65-99
|
1
|
Despotović, M., Bogdanović, Z., Barać, D., Radenković, B. (2008) An application of data mining in adaptive web based education system. u: Web-Based Education, Innsbruck
|
|
Ebner, M. (2007) e-learning 2.O = e-Learning 1.O + Web 2.0?. u: International Conference on Availability, Reliability and Security ARES'07 (2), str. 1235-1239
|
|
Esposito, F., Licchelli, O., Semeraro, G. (2004) Discovering student models in e-learning systems. Journal of Universal Computer Science, 10,(1), str. 47-57
|
3
|
Felder, R., Silvermann, L. (1988) Learning and teaching styles in engineering education. Engineering Education, 78(7), str. 674-681
|
|
Karampiperis, P., Sampson, D. (2005) Adaptive learning resources sequencing in educational hypermedia systems. Educational Technology and Society, 8, (4), 128-147
|
|
Koper, R., Burgos, D. (2005) Designing learning activities: From content-based to context-based learning services. International Journal on Advanced Technology for Learning, 2(3)
|
|
Moore, M.G., William, G. (2003) Handbook of distance education. Lawrence Erlbaum Associates
|
3
|
Paramythis, S. (2004) Loidl-Reisinger, adaptive learning environments and e-learning standards. Electronic Journal of e-Learning, 2,(1), str. 181-194
|
|
Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J. (2002) Getting to know you: Learning new user preferences in recommender systems. u: ACM IUI, str. 127-134
|
1
|
Romero, C., Ventura, S. (2007) Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 1, 33, str. 135-146
|
|
Romero, C., Ventura, S., ur. (2006) Data mining in e-learning. WIT Press
|
|
Tang, Z., Lennan, M.J. (2005) Data mining with SQL server. Wiley
|
|
Vassileva, J. (1996) A task-centered approach for user modeling in a hypermedia office documentation system. User Modeling and User-Adapted Interaction, 6,(2-3), str. 185-223
|
|
Watson, H., Wixom, B. (2007) The current state of business intelligence. Computer, 40,(9), str. 96-99
|
|
|
|