Akcije

Teaching of Mathematics
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 1  
2010, vol. 13, br. 1, str. 51-61
On the ancient problem of duplication of a cube in high school teaching
(naslov ne postoji na srpskom)
aNew York, NY, USA
bNovi Sad

e-adresadominovic@yahoo.com, gradimir.vojvodic@dmi.uns.ac.rs
Ključne reči: duplication of a cube; construction with compass and straightedge; constructible number; algebraic number
Sažetak
(ne postoji na srpskom)
The paper is devoted to exposition of constructions with straightedge and compass, constructible numbers and their position with respect to all algebraic numbers. Although the large number of constructions may be accomplished with straightedge and compass, one of the known problems of this kind dating from Greek era is duplication of a cube. The given proof in this paper is elementary and self contained. It is suitable for teachers, as well as for high school students.
Reference
Bold, B. (1982) The Delian problem. u: Famous problems of geometry and how to solve them, New York: Dover
Courant, R., Robbins, H., Stewart, I. (1996) What is mathematics?. Oxford University Press
Dörrie, H. (1965) The Delian cube-doubling problem. u: 100 great problems of elementary mathematics: Their history and solutions, New York: Dover
Kac, M., Ulam, S.M. (1992) Mathematics and logic. Dover Publications
Knorr, W.R. (1986) The ancient tradition of geometric problems. Boston
Perić, V. (1980) Algebra II. Sarajevo: IGKRO Svjetlost, in Serbian
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
objavljen u SCIndeksu: 13.07.2010.

Povezani članci

Zb Učitelj fak Prizren-Leposavić (2017)
Rešivost grupa i algebarskih jednačina
Mandak Alija