Metrika

  • citati u SCIndeksu: [2]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 1  
Elektroforetsko taloženje prevlaka hidroksiapatitnog nano-praha na čelik za izradu ortopedskih implantata 316LVM
aInstitut za tehnologiju nuklearnih i drugih mineralnih sirovina - ITNMS, Beograd
bUniverzitet u Beogradu, Tehnološko-metalurški fakultet

e-adresam.mihailovic@itnms.ac.rs
Projekat:
Projekat Ministarstva nauke Republike Srbije, br. MHT 19015

Sažetak
Hidroksiapatit se široko koristi kao keramički biomaterijal zbog svoje bioaktivnosti koju ispoljava kada se u vidu prevlake nanese na metalni implantat, kao i zbog kompatibilnosti sa sastavom ljudskih kostiju. Prevlake hidroksiapatitnog nano-praha elektroforetski su istaložene na peskiranu površinu uzoraka od nerđajućeg 316LVM čelika, pri konstantnom naponu i za različito vreme taloženja, a potom sinterovane u vakuumu na 1040°C i u atmosferi argona na 1000°C. Premda visoke temperature sinterovanja, koje su neophodne kako bi se dobile kompaktne prevlake velike gustine, mogu da dovedu do faznih promena kod hidroksiapatita, u ovom radu je pokazano da je na supsrtatu od 316LVM čelika moguće dobiti bioaktivne prevlake u kojima nije došlo do fazne promene zahvaljujući prirodi korišćenog hidroskiapatitnog nano-praha stehiometrijskog sastava. Visokotemperaturna stabilnost korišćenog HAp praha potvrđena je DTA-TG analizom u temperaturnom opsegu 23-1000°C, tj. na temperaturama na kojima su rađeni eksperimenti sinterovanja. Mikrostrukturna karakterizacija nanetih prevlaka urađena je korišćenjem SEM, dok je za određivanje faznog sastava korišćena XRD analiza.
Reference
Aizawa, M., Ueno, H., Itatani, K., Okada, I. (2006) Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. Journal of the European Ceramic Society, 26(4-5): 501-507
Baufeld, B., Vanderbiest, O., Ratzerscheibe, H. (2008) Lowering the sintering temperature for EPD coatings by applying reaction bonding. Journal of the European Ceramic Society, 28(9): 1793-1799
Choi, J., Kim, H., Lee, I. (2000) Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials, 21(5): 469-473
Ducheyne, P., Radin, S., Heughebaert, M., Heughebaert, J.C. (1990) Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials, 11(4): 244-254
Eliaz, N., Sridhar, T.M., Mudali-Kamachi, U.K., Baldev, R. (2005) Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surface Engineering, Vol 21, br. 3, 1-5
Heimann, R.B., Kurzweg, H., Ivey, D.G., Wayman, M.L. (1998) Microstructural andin vitro chemical investigations into plasma-sprayed bioceramic coatings. Journal of Biomedical Materials Research, 43(4): 441-450
Javidi, M., Javadpour, S., Bahrololoom, M., Ma, J. (2008) Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Materials Science and Engineering: C, 28(8): 1509-1515
Kannan, S., Balamurugan, A., Rajeswari, S. (2003) Hydroxyapatite coatings on sulfuric acid treated type 316L SS and its electrochemical behaviour in Ringer's solution. Materials Letters, 57(16-17): 2382-2389
Kurzweg, H., Heimann, R.B., Troczynski, T., Wayman, M.L. (1998) Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia. Biomaterials, 19(16): 1507-1511
Lacefield, W.R. (1988) Hydroxiapatite coatings. u: Ducheyne P., J.E. Lemons [ur.] Bioceramics: Materials characteristics versus in vivo behavior, New York
Landi, E., Tampieri, A., Celotti, G., Sprio, S. (2000) Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society, 20(14-15): 2377-2387
Meng, X., Kwon, T., Kim, K. (2008) Hydroxyapatite coating by electrophoretic deposition at dynamic voltage. Dental Materials Journal, 27(5): 666-671
Ruys, A.J., Sorell, C.C., Brandwood, A., Milthrope, B.K. (1995) J. Mater. Sci. Lett, 14, str. 744-747
Sirdhar, T.M., Kamachi-Mudali, U., Subbaiyan, M. (2003) Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corrosion Science, 45(2): 237-252
Stoch, A., Broek, A., Kmita, G., Stoch, J., Jastrzbski, W., Rakowska, A. (2001) Electrophoretic coating of hydroxyapatite on titanium implants. Journal of Molecular Structure, 596, 1-3, str. 191-200
Stojanovic, D., Jokic, B., Veljovic, D., Petrovic, R., Uskokovic, PS., Janackovic, D. (2007) Bioactive glass-apatite composite coating for titanium implant synthesized by electrophoretic deposition. Journal of the European Ceramic Society, vol. 27, br. 2-3, str. 1595-1599
Tang, C., Uskokovic, P.S., Tsui, C., Veljovic, D., Petrovic, R.D., Janackovic, D.T. (2009) Influence of microstructure and phase composition on the nanoindentation characterization of bioceramic materials based on hydroxyapatite. Ceramics International, vol. 35, br. 6, str. 2171-2178
Veljović, Đ., Zalite, I., Palcevskis, E., Smiciklas, I., Pertović, R., Janaćković, Đ. (2010) Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceramics International, 36(2): 595-603
Veljović, Đ., Jokić, B., Petrović, R., Palcevskis, E., Dindune, A., Mihailescu, I.N., Janaćković, Đ. (2009) Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceramics International, 35(4): 1407-1413
Wei, M., Ruys, A.J., Milthorpe, B.K., Sorrell, C.C. (2005) Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition. Journal of Materials Science: Materials in Medicine, 16(4): 319-324
Wei, M., Ruys, A.J., Milthorpe, B.K., Sorrell, C.C. (1999) Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition. Journal of Biomedical Materials Research, 45(1): 11-19
Wei, M., Ruys, A.J., Swain, M.V., Kim, S.H., Milthorpe, B.K., Sorrell, C.C. (1999) Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. Journal of materials science. Materials in medicine, 10(7): 401-9
Wei, M., Ruys, A.J., Milthorpe, B.K., Sorrell, C.C., Evans, J.H. (2001) Journal of Sol-Gel Science and Technology, 21(1/2): 39-48
Xiao, X., Liu, R. (2006) Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Materials Letters, 60(21-22): 2627-2632
Zhitomirsky, I., Gal-Or, L. (1997) Journal of Materials Science Materials in Medicine, 8(4): 213-219
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.2298/CICEQ100326052M
objavljen u SCIndeksu: 07.09.2011.