Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 1 od 1  
Stabilnost na konačnom vremenskom intervalu diskretnih sistema sa promenljivim vremenskim kašnjenjem
aUniverzitet u Nišu, Tehnološki fakultet, Katedra za matematičko-tehničke nauke, Leskovac
bUniverzitet u Beogradu, Mašinski fakultet, Katedra za automatsko upravljanje
Projekat:
Dinamika hibridnih sistema složenih struktura. Mehanika materijala (MPNTR - 174001)

Ključne reči: stabilnost na konačnom vremenskom intervalu; diskretni sistemi sa vremenskim kašnjenjem; vremenski promenljivo kašnjenje; linearne matrične nejednakosti; metoda slična Ljapunovoj metodi stabilnosti
Sažetak
U slučajevima kada velike vrednosti stanja sistema nisu prihvatljive, može se analizirati stabilnost sistema na konačnom vremenskom intervalu. U radu je razmatran problem stabilnosti na konačnom vremenskom intervalu za klasu diskretnih sistema sa promenljivim vremenskim kašnjenjem. Na osnovu metode koja je slična Ljapunovoj metodi stabilnosti izvedeni su dovoljni uslovi stabilnosti na konačnom vremenskom intervalu koristeći odgovarajuće transformacije modela originalnog sistema. Kriterijumi stabilnosti, koji zavise od donje i gornje granice vremenskog kašnjenja, iskazani su u obliku linearnih matričnih nejednakosti. Dati su numerički primeri kojima se ilustruje primenljivost izvedenih rezultata.
Reference
Amato, F., Carbone, M., Ariola, M., Cosentino, C. (2004) u: Proc. American Control Conf., Boston, str. 1440-1444
Amato, F., Ariola, M. (2005) Finite-time control of discrete-time linear systems. IEEE Transactions on Automatic Control, 50(5): 724-729
Amato, F., Ariola, M., Carbone, M., Cosentino, C. (2005) u: Proc. 16th IFAC World Congress, Prague
Amato, F., Ambrosino, R., Ariola, M., Calabrese, F. (2008) u: Proc. American Control Conf. Seattle, Washington, str. 1656-1660
Amato, F., Ambrosino, R., Ariola, M. (2011) De Tommasi G. u: Proc. 18th IFAC World Congress, Milano, pp. 156-16
Amato, F., Ariola, M., Cosentino, C., Abdallah, C., Dorato, P. (2003) Necessary and sufficient conditions for finite-time stability of linear systems. u: American Control Conference, Denver, Proceedings, 5 4452-4456
Amato, F., Ariola, M., Dorato, P. (2007) Finite-time stabilization via dynamic output feedback. Automatica (IFAC), vol. 42, str. 337-342
Amato, F., Ariola, M., Dorato, P. (2001) Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, 37(9): 1459-1463
Amato, F., Ariola, M., Cosentino, C. (2010) Finite-time control of discrete-time linear systems: Analysis and design conditions. Automatica, 46(5): 919-924
Angelo, H. (1970) Linear time-varying systems: analysis and synthesis. Boston: Allyn and Bacon
Chen, W., Jiao, L.C. (2010) Finite-time stability theorem of stochastic nonlinear systems. Automatica, 46(12): 2105-2108
Chen, W., Jiao, L.C. (2011) Authors’ reply to “Comments on ‘Finite-time stability theorem of stochastic nonlinear systems [Automatica 46 (2010) 2105-2108]”’. Automatica, 47(7): 1544-1545
Debeljkovic, D.Lj., Lazarevic, M.P., Koruga, Đ., Milinkovic, S.A., Jovanovic, M.B., ur. (2000) Proc. American control conf. Chicago, pp. 1450-1451
Debeljković, D.Lj., Nenadić, Z.Lj., Milinković, S.A., Jovanović, M.B. (1997) On practical and finite-time stability of time-delay systems. u: Proc. ECC97, Brussels Belgium, July 1-4, str. 307-311
Dorato, P. (1961) u: IRE Internat. Conv. Rec. New York, Part 4, pp. 83-87
Gao, F., Yuan, Z., Yuan, F. (2011) Adv. Inform. Sc. Serv. Sc., 3 (7):1-9
Garcia, G., Tarbouriech, S., Bernussou, J. (2009) Finite-Time Stabilization of Linear Time-Varying Continuous Systems. IEEE Transactions on Automatic Control, 54(2): 364-369
Ichihara, H., Katayama, H. (2009) u: IEEE conference on Decision and control (48th) and Chinese control conference (28th), Shanghai, P.R. China, str. 3226-3231
Ichihara, H., Katayama, H. (2009) u: American control conference, St. Louis, MS, Proceedings, str. 1171-1176
Jiang, D. (2009) u: Neural Networks on Advances in Neural Networks, 6th International Symposium, Wuhan, China, Proc, str. 522-531
Kamenkov, G.V. (1953) On stability of motion on finite-time interval. P.M.M., 17, pp.529-540
la Salle, J.P., Lefschetz, S. (1961) Stability by Liapunov's direct method, with applications. u: Mathematics in Science and Engineering, New York: Academic Press, Vol. 4
Lazarević, M.P., Debeljković, D.Lj., Nenadić, Lj.Z., Milinković, S.A. (2000) Finite time stability of time delay systems. IMA Journal of Mathematical Control and Information, br. 1, vol. 17, str. 101-109
Lebedev, A. (1954) J. Appl. Math. Mechanics, 18: 75-94
Lin, X., Du, H., Li, S. (2011) Finite-time boundedness and L2-gain analysis for switched delay systems with norm-bounded disturbance. Applied Mathematics and Computation, 217(12): 5982-5993
Liu, H., Shen, Y. (2011) Finite-Time Control for Switched Linear Systems with Time-Varying Delay. Intelligent Control and Automation, 02(03): 203-213
Mastellone, S., Abdallah, C.T., Dorato, P. (2005) u: Proc. American Control Conf., Portland, str. 1239-1244
Meng, Q., Shen, Y. (2009) Finite-time control for linear continuous system with norm-bounded disturbance. Communications in Nonlinear Science and Numerical Simulation, 14(4): 1043-1049
Moulay, E., Dambrine, M., Yeganefar, N., Perruquetti, W. (2008) Finite-time stability and stabilization of time-delay systems. Systems & Control Letters, 57(7): 561-566
Moulay, E., Perruquetti, W. (2006) Finite time stability and stabilization of a class of continuous systems. Journal of Mathematical Analysis and Applications, 323(2): 1430-1443
Shen, Y. (2008) Control Decis, 23, 107-109
Shen, Y., Zhu, L., Guo, Q. (2007) u: Proc. international Symposium on Neural Networks: Advances in Neural Networks (IV), Nanjing, China, str. 904-909
Stojanović, S.B., Debeljković, D.Lj. (2011) Analiza stabilnosti diskretnih sistema sa vremenski promenljivim kašnjenjem koja uzima u obzir iznos kašnjenja. Chemical Industry and Chemical Engineering Quarterly / CICEQ, vol. 17, br. 4, str. 497-503
Wang, J., Jian, J., Yan, P. (2009) u: International symposium on Neural networks on advances in neural, str. 395-404
Wang, X., Jiang, M., Jiang, C., Li, S. (2010) Proc. 7th International Symposium on Neural Networks, Shanghai, China. pp. 611-618
Weiss, L., Infante, E.F. (1967) Finite time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, AC-12, 54-59
Yanling, S., Fangzheng, G., Fushun, Y. (2011) Finite-time Stabilization of Networked Control Systems Subject to Communication Delay. International Journal of Advancements in Computing Technology, 3(3): 192-198
Zheng, Y., Chen, W., Wang, L. (2011) Finite-time consensus for stochastic multi-agent systems. International Journal of Control, 84(10): 1644-1652
Zhu, L., Shen, Y., Li, C. (2009) Finite-time control of discrete-time systems with time-varying exogenous disturbance. Communications in Nonlinear Science and Numerical Simulation, 14(2): 361-370