Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 1 od 1  
Antropomorfološke varijable kao prediktori tranzitne brzine kod fizički aktivnih žena
aUniverzitet u Beogradu, Fakultet sporta i fizičkog vaspitanja
bUniverzitet u Beogradu, Fakultet sporta i fizičkog vaspitanja + Univerzitet u Beogradu, Medicinski fakultet
Projekat:
Efekti primenjene fizičke aktivnosti na lokomotorni, metabolički, psiho-socijalni i vaspitni status populacije R Srbije (MPNTR - 47015)

Ključne reči: hodanje; trčanje; žene
Sažetak
Cilj ovog istraživanja bio je da ispita povezanost tranzitne brzine i antropometrijskih i varijabli telesnog sastava kod žena. U istraživanju je učestvovalo 15 mladih fizički aktivnih žena. Tranzitne brzine prelaska iz hodanja u trčanje (WRT) i trčanja u hodanje (RWT) određene su standardnim inkrementnim metodom. Antropometrijske varijable iz prostora longitudinalnih i cirkularnih mera procenjivane su standardnim procedurama merenja. Rezultati su pokazali da na vrednost WRT brzine utiču longitudinalne, dok na vrednost RWT brzine utiču mere cirkularne dimenzionalnosti. Od varijabli telesnog sastava, masa mišića u dominantnoj nozi pokazala je značajnu povezanost sa WRT i RWT, kao i sa prosečnom vrednošću tranzitne brzine (PTS). Sve navedene varijable pokazale su umerenu pozitivnu povezanost sa tranzitnim brzinama i objašnjavale su 30 - 41% varijanse tranzitne brzine. Na osnovu dobijenih rezultata može se zaključiti da antropometrijske i varijable telesnog sastava nisu varijable koje uzrokuju prelazak iz hodanja u trčanje i obrnuto, ali da u velikoj meri utiču na vrednost tranzitnih brzina.
Reference
Bartlett, J.L., Kram, R. (2008) Changing the demand on specific muscle groups affects the walk-run transition speed. Journal of Experimental Biology, 211(8): 1281-1288
Bessot, N., Lericollais, R., Gauthier, A., Sesboüé, B., Bulla, J., Moussay, S. (2015) Diurnal variation in gait characteristics and transition speed. Chronobiology International, 32(1): 136-142
Cohen, J. (1988) Statistical power analysis for the behavioral sciences. 2nd edn
Daniels, G.L., Newell, K.M. (2003) Attentional focus influences the walk-run transition in human locomotion. Biological Psychology, 63(2): 163-178
Dobrijević, S., Ranisavljev, I., Đurić, S., Ilić, V. (2020) The assessment of muscle mechanical properties in multi-joint movements reveals inverse correlation of leg muscle force and power with gait transition speed. Gait & Posture, 77: 59-63
Hansen, E.A., Kristensen, L.A.R., Nielsen, A.M., Voigt, M., Madeleine, P. (2017) The role of stride frequency for walk-to-run transition in humans. Scientific Reports, 7(1)
Hreljac, A. (1993) Preferred and energetically optimal gait transition speeds in human locomotion. Medicine and Science in Sports and Exercise, 25(10): 1158-62
Hreljac, A. (1995) Effects of physical characteristics on the gait transition speed during human locomotion. Human Movement Science, 14(2): 205-216
Hreljac, A. (1995) Determinants of the gait transition speed during human locomotion: Kinematic factors. Journal of Biomechanics, 28(6): 669-677
Hreljac, A., Ferber, R. (2000) The relationship between gait transition speed and dorsiflexor force production. Archives of Physiology and Biochemistry, 108(1-2), 90-90
Hreljac, A., Arata, A., Ferber, R., Mercer, J.A., Row, B.S. (2001) An Electromyographical Analysis of the Role of Dorsiflexors on the Gait Transition during Human Locomotion. Journal of Applied Biomechanics, 17(4): 287-296
Hreljac, A., Imamura, R., Escamilla, R.F., Edwards, B.W. (2007) Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion. Gait & Posture, 25(3): 419-424
Kram, R., Domingo, A., Ferris, D.P. (1997) Effect of reduced gravity on the preferred walk-run transition speed. Journal of Experimental Biology, 200(4), 821-826
Kung, S.M., Fink, P.W., Legg, S.J., Ali, A., Shultz, S.P. (2018) What factors determine the preferred gait transition speed in humans? A review of the triggering mechanisms. Human Movement Science, 57: 1-12
Malcolm, P., Segers, V., van Caekenberghe, I., de Clercq, D. (2009) Experimental study of the influence of the m. tibialis anterior on the walk-to-run transition by means of a powered ankle-foot exoskeleton. Gait & Posture, 29(1): 6-10
Mercier, J., le Gallais, D., Durand, M., Goudal, C., Micallef, J.P., Prefaut, C. (1994) Energy expenditure and cardiorespiratory responses at the transition between walking and running. European Journal of Applied Physiology & Occupational Physiology, 69(6), 525-529
Minetti, A.E., Ardigo, L.P., Saibene, F. (1994) The transition between walking and running in humans: Metabolic and mechanical aspects at different gradients. Acta Physiologica Scandinavica, 150(3): 315-323
Prilutsky, B.I., Gregor, R.J. (2001) Swingand support-related muscle actions differentially trigger human walk-run and run-walk transitions. Journal of Experimental Biology, 204(13), 2277-2287
Ranisavljev, I., Ilić, V., Soldatović, I., Stefanović, Đ. (2014) The relationship between allometry and preferred transition speed in human locomotion. Human Movement Science, 34: 196-204
Ranisavljev, I., Ilić, V., Markovic, S., Soldatović, I., Stefanović, Đ., Jarić, S. (2014) The relationship between hip, knee and ankle muscle mechanical characteristics and gait transition speed. Human Movement Science, 38: 47-57
Ranisavljev, I., Ilić, V. (2015) Povezanost alometrije tela i tranzitne brzine humane lokomocije. Godišnjak Fakulteta sporta i fizičkog vaspitanja, br. 21, str. 203-214
Raynor, A.J., Yi, C.J., Abernethy, B., Jong, Q.J. (2002) Are transitions in human gait determined by mechanical, kinetic or energetic factors?. Human Movement Science, 21(5-6): 785-805
Rotstein, A., Inbar, O., Berginsky, T., Meckel, Y. (2005) Preferred Transition Speed between Walking and Running: Effects of Training Status. Medicine & Science in Sports & Exercise, 37(11): 1864-1870
Schieb, D.A. (1986) Kinematic Accommodation of Novice Treadmill Runners. Research Quarterly for Exercise and Sport, 57(1): 1-7
Segers, V., Lenoir, M., Aerts, P., de Clercq, D. (2007) Influence of M. tibialis anterior fatigue on the walk-to-run and run-to-walk transition in non-steady state locomotion. Gait & Posture, 25(4): 639-647
Šentija, D., Rakovac, M., Babić, V. (2012) Anthropometric characteristics and gait transition speed in human locomotion. Human Movement Science, 31(3): 672-682
Thorstensson, A., Roberthson, H. (1987) Adaptations to changing speed in human locomotion: Speed of transition between walking and running. Acta Physiologica Scandinavica, 131(2): 211-214
Turvey, M.T., Holt, K.G., Lafiandra, M.E., Fonseca, S.T. (1999) Can the Transitions to and from Running and the Metabolic Cost of Running Be Determined from the Kinetic Energy of Running?. Journal of Motor Behavior, 31(3): 265-278
Usherwood, J.R., Bertram, J.E.A. (2003) Gait transition cost in humans. European Journal of Applied Physiology, 90(5-6): 647-650
Ziv, G., Rotstein, A. (2009) Physiological Characteristics of the Preferred Transition Speed in Racewalkers. Medicine & Science in Sports & Exercise, 41(4): 797-804
 

O članku

jezik rada: srpski
vrsta rada: izvorni naučni članak
DOI: 10.5937/gfsfV1924018D
objavljen u SCIndeksu: 26.05.2020.

Povezani članci

Godiš Fak spor fizič vaspit (2015)
Povezanost alometrije tela i tranzitne brzine humane lokomocije
Ranisavljev Igor, i dr.

FU: Physical Educ&Sport (2002)
Energetika i opažanje naprezanja kod sporog trčanja i brzog hodanja
Hreljac Alan, i dr.

Srps arh celokup lekarstvo (2012)
Hodanje brzinama približnim optimalnoj tranzitnoj brzini kao terapijski pristup gojaznosti
Ilić Duško, i dr.

prikaži sve [5]