Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:17
  • preuzimanja u poslednjih 30 dana:11

Sadržaj

članak: 1 od 1  
2018, vol. 22, br. 2, str. 95-100
Bazni pristup verifikaciji i validaciji modela izoterme sorpcije
aUniversity 'Mother Teresa', Faculty of Technical Sciences, Skopje, Macedonia
bUniverzitet u Novom Sadu, Poljoprivredni fakultet
cUniversity 'St. Kliment Ohridski', Faculty of Technical Sciences, Bitola, Macedonia

e-adresamonika.lutovska@unt.edu.mk
Ključne reči: verifikacija; validacija; model izoterme sorpcije
Sažetak
U ovom radu definisan je postupak statističke verifikacije i validacije novogeneriranog modela izoterme sorpcije. Prikazan je osnovni pristup evaluacije uspeha modela za aproksimaciju eksperimentalnih sorpcionih podataka. Tačnost modela u okviru prihvatljivog opsega je osnova da bi se jedan model smatrao validnim za set eksperimentalnih uslova, potrebnih za njegovu namenu. Ispitivani su eksperimentalno dobijeni podaci sa izračunatim podacima. Korišćeno je nekoliko statističkih kriterijuma predloženih u naučnoj literaturi i više statističkih pokazatelja (koeficijent determinacije (R2), srednja kvadratna greška (RMSE) i srednja relativna devijacija (MRD), za kvantitativnu verifikaciju novogenerisanog modela izoterme sorpcije. Kvalitativna statistička analiza izvršena je proverom nekoliko statističkih pretpostavki u vezi sa rezidualima dobijenim iz regresione analize. Ovo je realizovano stvaranjem normalnog dijagrama quantile-quantile koji izražava normalnu raspodelu i Scatter plot dijagrama koji izražava slučajnu raspodelu ostataka. Validacija eksperimentalnih podataka izotermnih sorpcija kruške (određivanja na četiri temperature 15˚C, 30˚C, 45˚C i 60˚C, u opsegu aktivnosti vode od 0.110 do 0.920), aproksimirana novogeneriranim triparametarskim modelom izoterme sorpcije, poređena je sa rezultatima referentnog Andersonovog modela, poznatijeg u naučnoj literaturi pod imenom GAB (Guggenheim - Anderson - de Boer) model. Uspeh aproksimacije novoformiranog modela u odnosu na referentni model je potvrđen.
Reference
Anderson, R.B. (1946) Modifications of the Brunauer, Emmett and Teller Equation 1. Journal of the American Chemical Society, 68(4): 686-691
Andreevski, I. (2008) Primena na inverznata postapka za razvoj i verifikacija na disperzionite modeli. doktorska disertacija
Basu, S., Shivhare, U.S., Mujumdar, A.S. (2006) Models for Sorption Isotherms for Foods: A Review. Drying Technology, 24(8): 917-930
Boquet, R., Chirife, J., Iglesias, H.A. (2007) Equations for fitting water sorption isotherms of foods. III. Evaluation of various three-parameter models. International Journal of Food Science & Technology, 14(5): 527-534
Boquet, R., Chirife, J., Iglesias, H.A. (2007) Equations for fitting water sorption isotherms of foods. International Journal of Food Science & Technology, 13(4): 319-327
Chirife, J., Iglesias, H.A. (2007) Equations for fitting water sorption isotherms of foods: Part 1 - a review. International Journal of Food Science & Technology, 13(3): 159-174
Dagostino, R.B., Belanger, A., Dagostino, R.B. (1990) A Suggestion for Using Powerful and Informative Tests of Normality. American Statistician, 44(4): 316-321
Djendoubi, M.N., i dr. (2011) Moisture desorption isotherms, isosteric heats of desorption and glass transition of fresh pear and apple: Experimental and mathematical investigation. u: 3th European Drying Conference: EuroDrying’2011, Palma, Balearic Island, Spain, Proceedings on CD
Gal, S. (1987) The need for, and practical applications of sorption data. u: Jowitt R., Escher F., Hallstrom B., Meferet H., Spiess W., Vos G. [ur.] Physical Properties of Foods, London: Elsevier Applied Science, pp. 13-25
Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1): 89
Guiné, R.P.F., Castrct, J.A.A.M. (2002) Experimental Determination and Computer Fitting of Desorption Isotherms of D. Joaquina Pears. Food and Bioproducts Processing, 80(3): 149-154
Guiné, R.P.F. (2009) Sorption Isotherms of Pears Using Different Models. International Journal of Fruit Science, 9(1): 11-22
Jaroniec, M. (1975) Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm. Surface Science, 50(2): 553-564
Kiranoudis, C.T., Tsami, E., Maroulis, Z.B., Marinos-Kouris, D. (1997) Drying kinetics of some fruits. Drying Technology, 15(5): 1399
Lahsasni, S., Kouhila, M., Mahrouz, M. (2004) Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica). Energy Conversion and Management, 45(2): 249-261
Lewicki, P.P. (1998) A three parameter equation for food moisture sorption isotherms. Journal of Food Process Engineering, 21(2): 127-144
Lutovska, M. (2016) Application of inverse approach for verification of sorption models. doctoral dissertation
Lutovska, M., Mitrevski, V., Pavkov, I., Babić, M., Mijakovski, V., Geramitcioski, T., Stamenković, Z. (2017) Different methods of equilibrium moisture content determination. Journal on Processing and Energy in Agriculture, vol. 21, br. 2, str. 91-96
Mitrevski, V., Lutovska, M., Mijakovski, V., Pavkov, I., Babic, M., Radojcin, M. (2015) Adsorption isotherms of pear at several temperatures. Thermal Science, 19(3): 1119-1129
Mitrevski, V., Lutovska, M., Pavkov, I., Mijakovski, V., Popovski, F. (2015) The Power Series as Water Sorption Isotherm Models. Journal of Food Process Engineering, 39(2): 178-185
Popovski, D., Mitrevski, V. (2004) A method for extension of the water sorption isotherm models. EJEAF Che., 799-803; 3
Popovski, D., Mitrevski, V. (2005) A method for generating water sorption isotherm models. EJEAF Che., 945-948; 4
Popovski, D., Mitrevski, V. (2005) A generator of water desorption isotherm models. u: The 11th Polish Drying Symposium, September 13-16, Poznan, Poland, Proceedings of, 1-4
Popovski, D., Mitrevski, V. (2005) Method of free parameter for extension of the water sorption isotherm models. u: The 32th International Conference of Slovak Society of Chemical Engineering, May 23-27, Tatranske Matliare, Slovakia, Proceedings of, 1-5
Popovski, D., Mitrevski, V. (2006) Two methods for generating new water sorption isotherm models. EJEAF Che., 1407-1410; 5
Popovski, D., Mitrevski, V. (2006) Trigonometric and cyclometric models of water sorption isotherms. EJEAF Che., 1711-1718; 6
Popovski, D., Mitrevski, V. (2004) Some new four parameter model for moisture sorption isotherms. EJEAF Che., 698-701; 3
Ruiz-López, I.I., Herman-Lara, E. (2009) Statistical Indices for the Selection of Food Sorption Isotherm Models. Drying Technology, 27(6): 726-738
Sargent, R.G. (2010) Verification and validation of simulation models. u: Proceedings of the 2010 Winter Simulation Conference, Institute of Electrical and Electronics Engineers (IEEE), str. 166-183
Sargent, R.G. (2013) An introduction to verification and validation of simulation models. u: 2013 Winter Simulations Conference (WSC), Institute of Electrical and Electronics Engineers (IEEE), str. 321-327
Sheskin, D.J. (2011) Handbook of parametric and nonparametric statistical procedures. Boca Raton: CRC Press, 5th edition
van den Berg, C., Bruin, S. (1981) Water activity and its estimation in food systems: theoretical aspects. u: Water Activity: Influences on Food Quality, Elsevier BV, str. 1-61
Wolf, W., Spiess, W.E.L., Jung, G. (1985) Standardization of Isotherm Measurements (Cost-Project 90 and 90 BIS). u: Simatos, D.; Multon, J. L. [ur.] Properties of Water in Foods, Dordrecht: Springer Nature, str. 661-679
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/JPEA1802095L
objavljen u SCIndeksu: 03.05.2018.

Povezani članci