Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[5]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 8 od 21  
Back povratak na rezultate
2016, vol. 57, br. 3, str. 488-495
Hidročađi, perspektivni adsorbenti teških metala - pregled aktuelnih pravaca u istraživanjima
aInstitut za tehnologiju nuklearnih i drugih mineralnih sirovina - ITNMS, Beograd, Srbija
bUniverzitet u Beogradu, Poljoprivredni fakultet, Srbija
Projekat:
Razvoj tehnologija i proizvoda na bazi mineralnih sirovina i otpadne biomase u cilju zaštite resursa za proizvodnju bezbedne hrane (MPNTR - 31003)

Ključne reči: hidročađi; teški metali; adsorpcija; aktivacija
Sažetak
Kao alternativa pirolizi, hidrotermalna karbonizacija je predložena kao perspektivan pravac konverzije širokog spektra otpadnih biomasa u biogoriva, adsorbente i specifične hemikalije. U ovom preglednom radu predstavljena su aktuelna istraživanja primene različitih otpadnih biomasa, kao prekursora za dobijanje hidročađi - efikasnih adsorbenata teških metala iz otpadnih voda postupkom hidrotermalne konverzije. Efikasnost biosorbenata je diskutovana u odnosu na strukturne karakteristike, reakcione parametre, sorpcione kapacitete i mehanizme, kao i predložene metode poboljšanja površinske reaktivnosti hidročađi. Sveukupno, biosorpcija hidročađima je identifikovana kao dobra alternativa konvencionalnim tehnologijama uklanjanja toksičnih metalnih jona iz otpadnih voda.
Reference
Alatalo, S., Repo, E., Mäkilä, E., Salonen, J., Vakkilainen, E., Sillanpää, M. (2013) Adsorption behavior of hydrothermally treated municipal sludge & pulp and paper industry sludge. Bioresource Technology, 147: 71-76
Argun, M.E., Dursun, S., Karatas, M. (2009) Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination, 249(2): 519-527
Baccile, N., Laurent, G., Babonneau, F., Fayon, F., Titirici, M., Antonietti, M. (2009) Structural Characterization of Hydrothermal Carbon Spheres by Advanced Solid-State MAS 13 C NMR Investigations. Journal of Physical Chemistry C, 113(22): 9644-9654
Bach, Q., Tran, K., Khalil, R.A., Skreiberg, Ø., Seisenbaeva, G. (2013) Comparative Assessment of Wet Torrefaction. Energy & Fuels, 27(11): 6743-6753
Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D. (1999) A review of potentially low-cost sorbents for heavy metals. Water Res, 33, str. 2469-2479
Belhalfaoui, B., Aziz, A., Elandaloussi, E.H., Ouali, M.S., De, M.L.C. (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium-removal from spiked high-hardness groundwater. Journal of hazardous materials, 169(1-3): 831-7
Benavente, V., Calabuig, E., Fullana, A. (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 113: 89-98
Bergius, F. (1931) Chemical reactions under high pressure. Nobel Foundation, Lecture Note, p. 1-33
Cao, X., Ro, K.S., Chappell, M., Li, Y., Mao, J. (2011) Chemical Structures of Swine-Manure Chars Produced under Different Carbonization Conditions Investigated by Advanced Solid-State 13 C Nuclear Magnetic Resonance (NMR) Spectroscopy †. Energy & Fuels, 25(1): 388-397
Chen, Y., Chen, J., Chen, S., Tian, K., Jiang, H. (2015) Ultra-high capacity and selective immobilization of Pb through crystal growth of hydroxypyromorphite on amino-functionalized hydrochar. J. Mater. Chem. A, 3(18): 9843-9850
Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M. (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of environmental management, 85(4): 833-46
Elaigwu, S.E., Rocher, V., Kyriakou, G., Greenway, G.M. (2014) Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. Journal of Industrial and Engineering Chemistry, 20(5): 3467-3473
Fang, J., Gao, B., Chen, J., Zimmerman, A.R. (2015) Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, 267: 253-259
Fuertes, A. B., Arbestain, M. C., Sevilla, M., Maciá-Agulló, J. A., Fiol, S., López, R., Smernik, R. J., Aitkenhead, W. P., Arce, F., Macías, F. (2010) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Australian Journal of Soil Research, 48(7): 618
Funke, A., Ziegler, F. (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2): 160-177
Ghanim, B.M., Pandey, D.S., Kwapinski, W., Leahy, J.J. (2016) Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresource Technology, 216: 373-380
Kalderis, D., Kotti, M. S., Méndez, A., Gascó, G. (2014) Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth, 5(1): 477-483
Kambo, H.S., Dutta, A. (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy, 135: 182-191
Kambo, H.S., Dutta, A. (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45: 359-378
Keiluweit, M., Kleber, M. (2009) Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic π-Systems. Environmental Science & Technology, 43(10): 3421-3429
Kumar, S., Loganathan, V.A., Gupta, R.B., Barnett, M.O. (2011) An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of environmental management, 92(10): 2504-12
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M., Fühner, C., Bens, O., Kern, J., Emmerich, K. (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1): 71-106
Lima, I.M., Boateng, A.A., Klasson, K.T. (2010) Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts. Journal of Chemical Technology & Biotechnology, 85, 1515-1521
Liu, Z., Zhang, F. (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of hazardous materials, 167(1-3): 933-9
Liu, Z., Quek, A., Hoekman, S. K., Balasubramanian, R. (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103: 943-949
Liu, Z., Zhang, F., Wu, J. (2010) Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 89(2): 510-514
Liu, Z., Zhang, F. (2011) Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267(1): 101-106
Lopičić, Z.R., Milojković, J.V., Šoštarić, T.D., Petrović, M.S., Mihajlović, M.L., Lačnjevac, Č., Stojanović, M.D. (2013) Uticaj pH vrednosti na biosorpciju jona bakra otpadnom lignoceluloznom masom koštice breskve. Hemijska industrija, vol. 67, br. 6, str. 1007-1015
Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., Qiu, R. (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water research, 46(3): 854-62
McKay, G., Porter, J.F. (1997) Equilibrium Parameters for the Sorption of Copper, Cadmium and Zinc Ions onto Peat. Journal of Chemical Technology & Biotechnology, 69(3): 309-320
Milojković, J., Mihajlović, M., Šoštarić, T., Lopičić, Z., Petrović, M., Lačnjevac, Č., Stojanović, M. (2014) Ispitivanje efikasnosti različitih sorpcionih materijala za uklanjanje Cu(II) jona iz vodenog rastvora. Zaštita materijala, vol. 55, br. 3, str. 281-286
Milojković, J.V., Mihajlović, M.L., Stojanović, M.D., Lopičić, Z.R., Petrović, M.S., Šoštarić, T.D., Ristić, M.Đ. (2013) Pb(II) removal from aqueous solution byMyriophyllum spicatumand its compost: equilibrium, kinetic and thermodynamic study. Journal of Chemical Technology & Biotechnology, 89(5): 662-670
Milojković, J.V., Stojanović, M.D., Mihajlović, M.L., Lopičić, Z.R., Petrović, M.S., Šoštarić, T.D., Ristić, M.Đ. (2014) Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions. Water, Air, & Soil Pollution, 225(4)
Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., Kern, J. (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresource technology, 102(19): 9255-60
Pala, M., Kantarli, I.C., Buyukisik, H.B., Yanik, J. (2014) Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresource Technology, 161: 255-262
Papandreou, A., Stournaras, C.J., Panias, D. (2007) Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of hazardous materials, 148(3): 538-47
Parshetti, G.K., Hoekman, S. K., Balasubramanian, R. (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresource Technology, 135: 683-689
Petrović, J., Perišić, N., Maksimović, J.D., Maksimović, V., Kragović, M., Stojanović, M., Laušević, M., Mihajlović, M. (2016) Hydrothermal conversion of grape pomace: Detailed characterization of obtained hydrochar and liquid phase. Journal of Analytical and Applied Pyrolysis, 118: 267-277
Petrović, J.T., Mihajlović, M.L., Stojanović, M.D., Stanojević, M.R., Petrović, M.S., Milojković, J.V., Lačnjevac, Č.M. (2015) Održiva konverzija otpadne biomase primenom postupka hidrotermalne karbonizacije. Zaštita materijala, vol. 56, br. 2, str. 206-212
Petrović, M., Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović, M., Stanojević, M., Stanković, S. (2016) Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. Journal of the Taiwan Institute of Chemical Engineers, 58: 407-416
Poerschmann, J., Weiner, B., Wedwitschka, H., Zehnsdorf, A., Koehler, R., Kopinke, F.-D. (2015) Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii. Bioresource Technology, 189: 145-153
Regmi, P., Moscoso, J.L.G., Kumar, S., Cao, X., Mao, J., Schafran, G. (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109: 61-69
Reza, M. T., Lynam, J.G., Uddin, M. H., Coronella, C.J. (2013) Hydrothermal carbonization: Fate of inorganics. Biomass and Bioenergy, 49: 86-94
Sevilla, M., Maciá-Agulló, J.A., Fuertes, A.B. (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bioenergy, 35(7): 3152-3159
Spataru, A. (2014) The use of hydrochar as a low cost adsorbent for heavy metal and phosphate removal from wastewater. Ghent University, Master thesis, http://lib.ugent.be/fulltxt/RUG01/002/166/ 590/RUG01002166590_2014_0001_AC.pdf
Sun, K., Tang, J., Gong, Y., Zhang, H. (2015) Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environmental Science and Pollution Research, 22(21): 16640-16651
Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., Yang, L. (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240: 574-578
Swiatkowski, A., Pakula, M., Biniak, S., Walczyk, M. (2004) Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions. Carbon, 42(15): 3057-3069
Šćiban, M.B., Radetic, Bogdanka., Kevresan, Žarko., Klasnja, Mile. (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol., vol. 98, br. 2, str. 402-409
Tan, W.T., Ooi, S.T., Lee, C.K. (1993) Removal of chromium(VI) from solution by coconut husk and palm pressed fibres. Environmental Technology, 14(3): 277-282
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012) Heavy metals toxicity and the environment. u: Molecular, Clinical and Environmental Toxicology, Basel: Springer, Experientia Supplementum 101, p. 133-164
Titirici, M., White, Robin. J., Falco, C., Sevilla, M. (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science, 5(5): 6796
Wan, N.W.S., Hanafiah, M.A.K.M. (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource technology, 99(10): 3935-48
Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H.H., Guo, W., Liu, C., Chen, L., Xing, B. (2015) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177: 308-317
Xiao, L., Shi, Z., Xu, F., Sun, R. (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 118: 619-623
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S. (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200-202: 673-680
 

O članku

jezik rada: engleski
vrsta rada: pregledni članak
DOI: 10.5937/ZasMat1603488M
objavljen u SCIndeksu: 29.09.2016.

Povezani članci

Nema povezanih članaka