- citati u SCIndeksu: [7]
- citati u CrossRef-u:[6]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:11
- preuzimanja u poslednjih 30 dana:7
|
|
2017, vol. 3, br. 1, str. 92-101
|
Primena kvantitativnih metoda u predviđanju poslovanja privrednih društava
Applying the machine learning method in predicting business winners vs. losers through financial reports
Sažetak
Predikcija poslovanja privrede Srbije je od velike važnosti za investicione aktivnosti, koje su generator rasta i razvoja ekonomije jedne zemlje. Zvanično obelodanjeni podaci o rezultatima poslovanja privrede Srbije su potrebna i dovoljna osnova za sušastvenu analizu finansijskih izveštaja u domenu predikcije, kao i detektovanja potencijalnih gubitaša versus dobitaša u privredi. U prilogu je izvršena analiza ključnih salda računa bilansa uspeha, koji prediktivno detektuju privredna društva na gubitaše ili dobitaše, primenom vetačke inteligencije tj. mašinskog učenja (Data Mininga). Kvantitativna analiza putem mašinskog učenja se odnosi na bilanse uspeha i stanja, preciznije respektivnih salda računa bilansa uspeha na reprezentativnom uzorku od oko 600 privrednih društava, koja su podvrgnuta analizi sa singnifikantnim rezultatima apsolutne tačnosti.
Abstract
Predicting the management of Serbia's economy is of great importance for investment activities which generate growth and development of a country. Official public data on the results of Serbia's economy management are a necessary and sufficient basis for a fundamental analysis of financial reports in the field of prediction, as well as detecting potential losers vs. winners in the economy. The article performs an analysis of key ratio indicators that detect in a predictive fashion business losers or winners by applying artificial intelligence or machine learning (Data Mining). Quantitative analysis by way of machine learning is applied on balance sheets and income statements, more accurately from a representative sample of about 600 companies which are analyzed with significant results of absolute accuracy.
|
|
|
Reference
|
6
|
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984) Classification and regression trees. Belmont: Wadsworth
|
1
|
Chercassky, V., Mučier, F.M. (2007) Learning from data: Concept, theory and mehods. John Wiley, 2ed
|
1
|
Farlov, S. (1984) Self-organizing methods in modeling: GMDH ture algorithm. Taylor and Francis
|
1
|
Forsyth, R., ur. (1989) Machine learning: Principles and techniques. London: Chapman and Hall
|
|
Gilad-Bachrach, R., Navot, A., Tishby, N. (2006) Large Margin Principles for Feature Selection. u: Guyon, Isabelle; Nikravesh, Masoud; Gunn, Steve; Zadeh, Lotfi A. [ur.] Feature extraction, foundations and applications, Berlin, Heidelberg: Springer Nature, str. 585-606
|
|
Gilad-Bachrach, R., Navot, A., Tishby, N. (2004) Margin based feature selection - theory and algorithms. u: Twenty-first international conference on Machine learning - ICML '04, New York, New York, USA: Association for Computing Machinery (ACM), str. 43
|
1
|
Han, J., Camber, M. (2000) Data mining concepts and techniques. San Diego, USA: Morgan Kaufman
|
2
|
Hart, A. (1989) Machine induction as a form of knowledge acquisition in knowledge engineering. u: Forsyth R. [ur.] Machine learning: Principles and techniques, London: Chapman and Hall
|
2
|
Haussler, D. (1990) Probably approximately correct learning. u: National Conference on Artificial Intelligence (8th), Morgan Kaufmann, pages 1101-1108
|
|
Kantardzic, M. (2013) Data mining: Concepts, models, methods, and algorithms. Willey
|
1
|
Kirkos, E., Spathis, C., Manolopoulos, Y. (2007) Data Mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 32(4): 995-1003
|
4
|
Kohavi, R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. u: Proc. of International Joint Conference on Artificial Intelligence
|
|
Kothari, S.P., Lester, R. (2012) The Role of Accounting in the Financial Crisis: Lessons for the Future. Accounting Horizons, 26(2): 335-351
|
|
Quinlan, J.R., Cameron-Jones, R.M. (1995) Induction of logic programs: FOIL and related systems. New Generation Computing, 13(3-4): 287-312
|
|
Stanojević, Lj., Kaludjerović, N., Brzaković, T., Stanojević, S. (2015) Detecting hidden losses in the financial statements: Case of Serbia. International Journal of Business and Social Science, 6(4); 125-132
|
|
WB DataBank (2013) IMF World economic outlook database
|
6
|
Witten, I.H., Frank, E. (2005) Data mining: Practical machine learning tools and techniques with java implementations. San Francisco, CA, itd: Morgan Kaufmann
|
|
|
|