Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:10
  • preuzimanja u poslednjih 30 dana:10

Sadržaj

članak: 9 od 20  
Back povratak na rezultate
2013, vol. 50, br. 2, str. 36-43
Genetika mutacije graška (Pisum sativum L.) - šta je urađeno i šta treba da se uradi
M.V. Lomonosov Moscow State University, Biological Faculty, Genetics Dept, Moscow, Russia

e-adresaasinjushin@mail.ru
Sažetak
Pored izuzetne praktične vrednosti, baštenski grašak (Pisum sativum L.) predstavlja klasični model za proučavanje ontogeneze složene cvasti, složenog lista, zigomorfnog cveta i nodulacije. Proširen niz prirodnih varijacija mutacijama omogućio je unapređenje useva i razvojnih istraživanja. Dat je pregled trenutnog stanja genetike mutacije kod graška sa posebnim osvrtom na genetiku ontogeneze i praktičnu vrednost.
Reference
*** PGene Pisum Gene List. John Innes Center Germplasm Collection. http://http://data.jic.bbsrc.ac.uk/cgi-bin/pgene (pristupljeno: 08-05-2013)
Ambrose, M. (2004) A novel allele at the Afila (Af) locus and new alleles at the Tendril-less (Tl) locus. Pisum Genet, 36: 1-2
Amelin, A.V., Kostikova, N.O., Kondykov, I.V., Panarina, V.I., Uvarova, O.V., Bobkov, S.V. (2011) Seed quality in pea cultivars with different morphotypes. Vestnik OrelGAU, 28: 86-90 In Russian
Avercheva, O.V., Sinjushin, A.A., Zelenov, A.N. (2012) A spontaneous mutation in a semi-leafless pea cultivar restores leaflet formation and improves photosynthetic function. u: VI International Conference on Legumes Genetics and Genomics. Program and abstract book, 391
Ayeh, K.O., Lee, Y., Ambrose, M.J., Hvoslef-Eide, A.K. (2009) Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L. BMC Plant Biol, 9: 76
Belyakova, A.S., Sinjushin, A.A. (2012) Phenotypic expression and inheritance of determinate habit (deh) mutation in pea (Pisum sativum L.). u: VI International Conference on Legumes Genetics and Genomics. Program and abstract book, 353
Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Madueno, F., Beltran, J. (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant Journal, 25(4): 441-451
Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Beltran, J., Madueno, F. (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiology, 139(1): 174-185
Berdnikov, V.A., Gorel, F.L. (2005) A mutation, tl2, in pea (Pisum sativum L.) affects leaf development only in the heterozygous state. Theoretical and Applied Genetics, 110(6): 1086-1091
Bhattacharyya, M.K., Smith, A.M., Ellis, N.T.H., Hedley, C., Martin, C. (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 60(1): 115-22
Blixt, S. (1972) Mutation genetics in Pisum. Agri Hort Genetica, 30: 1-293
Borisov, A.Yu., Danilova, T.N., Koroleva, T.A., Kuznetsova, E.V., Madsen, L., Mofett, M., Naumkina, T.S., Nemankin, T.A., Ovchinnikova, E.S., Pavlova, Z.B., Petrova, N.E., Pinaev, A.G., Radutoiu, S., Rozov, S.M. (2007) Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: A review of basic and applied aspects. Appl Biochem Microbiol, 43(3): 237-243
Couzigou, J., Zhukov, V., Mondy, S., Abu, H.G., Cosson, V., Ellis, N.T.H., Ambrose, M., Wen, J., Tadege, M., Tikhonovich, I., Mysore, K.S., Putterill, J., Hofer, J. (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell, 24(11): 4498-4510
Ferrandiz, C., Navarro, C., Gomez, M.D., Canas, L.A., Beltran, J.P. (1999) Flower development inPisum sativum: From the war of the whorls to the battle of the common primordia. Dev Genet, 25(3): 280-290
Foucher, F., Morin, J., Courtiade, J., Cadioux, S., Ellis, N., Banfield, M.J., Rameau, C. (2003) Determinate and late flowering are two terminal flower1/centroradialis homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell, 15(11): 2742-2754
Gourlay, C.W., Hofer, J.M.I., Ellis, N.T.H. (2000) Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS. Plant Cell, 12(8): 1279-1294
Hellens, R.P., Moreau, C., Lin-Wang, K., Schwinn, K.E., Thomson, S.J., Fiers, M.W.E.J., Frew, T.J., Murray, S.R., Hofer, J.M.I., Jacobs, J.M.E., Davies, K.M., Allan, A.C. (2010) Identification of Mendel's White Flower Character. PLoS One, 5(10): e13230
Kneen, B.E., LaRue, T.A. (1988) Induced symbiosis mutants of pea (Pisum sativum) and sweetclover (Melilotus albus annua). Plant Sci, 58: 177-182
Kondykov, I.V., Zotikov, V.I., Zelenov, A.N., Kondykova, N.N., Uvarov, V.N. (2006) Biology and breeding of determinate pea forms. Orel: Kartush, In Russian
Krusell, L., Sato, N., Fukuhara, I., Koch, B.E.V., Grossmann, C., Okamoto, S., Oka-Kira, E., Otsubo, Y., Aubert, G., Nakagawa, T., Sato, S., Tabata, S., Duc, G., Parniske, M. (2011) The CLAVATA2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant Journal, 65(6): 861-871
Kumar, S., Chaudhary, S., Sharma, V., Kumari, R., Mishra, R.K., Kumar, A., Choudhury, D.R., Jha, R., Priyadarshini, A., Kumar, A. (2010) Genetic control of leaf-blade morphogenesis by the INSECATUS gene in Pisum sativum. J Genet, 89: 201-211
Lamprecht, H. (1947) The inheritance of the number of flowers per inflorescence and the origin of Pisum, illustrated by polymeric genes. Agri Hort Genetica, 5: 16-25
Lester, D.R., Ross, J.J., Davies, P.J., Reid, J.B. (1997) Mendel's stem length gene (Le) encodes a gibberellin 3.beta.-hydroxylase. Plant Cell, 9(8): 1435-1443
Li, X., Zhuang, L., Ambrose, M., Rameau, C., Hu, X., Yang, J., Luo, D. (2010) Genetic analysis of ele mutants and comparative mapping of ele1 locus in the control of organ internal asymmetry in garden pea. J Integr Plant Biol, 52: 528-535
Makasheva, K.R., Drozd, A.M. (1987) Determinate growth habit (det) in peas: isolation, symbolization and linkage. 19: 31-32
Makasheva, R.K. (1984) The pea. New Delhi: Oxonian Press
Marx, G.A. (1987) A suite of mutants that modify pattern formation in pea leaves. Plant Mol Biol Report, 5(3): 311-335
Mendel, G. (1866) Versuche ueber Pflanzenhybriden. Verhandl Naturfosch Vereins, 4: 3-47
Mikić, A., Mihailović, V., Ćupina, B., Kosev, V., Warkentin, T., McPhee, K., Ambrose, M., Hofer, J., Ellis, N. (2011) Genetic background and agronomic value of leaf types in pea (Pisum sativum). Ratarstvo i povrtarstvo, vol. 48, br. 2, str. 275-284
Mishra, R.K., Chaudhary, S., Kumar, A., Kumar, S. (2009) Effects of MULTIFOLIATE-PINNA, AFILA, TENDRIL-LESS and UNIFOLIATA genes on leafblade architecture in Pisum sativum. Planta, 230(1): 177-190
Moreau, C., Ambrose, M.J., Turner, L., Hill, L., Ellis, N.T.H., Hofer, J.M.I. (2012) The b gene of pea encodes a defective flavonoid 3',5'-hydroxylase, and confers pink flower color. Plant Physiology, 159(2): 759-768
Murphet, I.C., Reid, J.B. (1993) Developmental mutants. u: Casey R.; Davies D.R. [ur.] Peas: genetics, molecular biology and biotechnology, Oxfordshire: CAB International, 165-216
Nadeau, J.A., Sack, F.D. (2002) Stomatal development of Arabidopsis. u: The Arabidopsis book
Prajapati, S., Kumar, S. (2002) Interaction of the UNIFOLIATA-TENDRILLED ACACIA gene with AFILA and TENDRIL-LESS genes in the determination of leaf blade growth and morphology in pea Pisum sativum. Plant Science, 162(5): 713-721
Reid, J.B., Ross, J.J. (2011) Mendel's genes: toward a full molecular characterization. Genetics, 189(1): 3-10
Ross, J.J., Murfet, I.C., Reid, J.B. (1997) Gibberellin mutants. Physiologia Plantarum, 100(3): 550-560
Sattler, R. (1988) Homeosis in Plants. American Journal of Botany, 75(10): 1606-1617
Sharma, V., Tripathi, B.N., Kumar, S. (2012) Organ-wise homologies of stipule, leaf and inflorescence between Pisum sativum genetic variants, Delonix regia and Caesalpinia bonduc indicate parallel evolution of morphogenetic regulation. Plant Syst Evol, 298: 1167-1175
Sharma, V., Chaudhary, S., Kumar, A., Kumar, S. (2012) COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum. Journal of Biosciences, 37(Suppl.1): 1041-1059
Shtark, O., Provorov, N., Mikić, A., Borisov, A., Ćupina, B., Tikhonovich, I. (2011) Legume root symbioses: Natural history and prospects for improvement. Ratarstvo i povrtarstvo, vol. 48, br. 2, str. 291-304
Singer, S.R., Hsiung, L.P., Huber, S.C. (1990) Determinate (det) mutant of Pisum sativum (Leguminosae: Papilionoideae) exhibits an indeterminate growth pattern. Am J Bot, 77: 1330-1335
Singer, S., Sollinger, J., Maki, S., Fishbach, J., Short, B., Reinke, C., Fick, J., Cox, L., Mccall, A., Mullen, H. (1999) Inflorescence architecture: A developmental genetics approach. Botanical Review, 65(4): 385-410
Sinyushin, A.A. (2010) Flower fasciation: I. Origin of enlarged meristem. Moscow Uni Biol Sci Bull, 65: 98-103
Sinjushin, A.A., Gostimsky, S.A. (2006) Fasciation in pea: basic principles of morphogenesis. Rus J Dev Biol, 37: 375-381
Sinjushin, A.A., Gostimskii, S.A. (2007) Relationship between different fasciated lines of pea. Pisum Genet, 39: 16-18
Sinjushin, A. (2011) On the role of genes determinate, late flowering and fasciata in the morphogenesis of pea inflorescence. Ratarstvo i povrtarstvo, vol. 48, br. 2, str. 313-320
Sinjushin, A.A. (2013) Origin and variation of polymerous gynoecia in Fabaceae: evidence from floral mutants of pea (Pisum sativum L.). Plant Systematics and Evolution
Tattersall, A.D., Turner, L., Knox, M.R., Ambrose, M.J., Ellis, N.T.H., Hofer, J.M.I. (2005) The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell, 17(4): 1046-1060
Taylor, S., Hofer, J., Murfet, I. (2001) Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell, 13(1): 31-46
Varshney, R.K., Song, C., Saxena, R.K., Azam, S., Yu, S., Sharpe, A.G., Cannon, S., Baek, J., Rosen, B.D., Tar, B., Millan, T., Zhang, X., Ramsay, L.D., Iwata, A. (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31(3): 240-246
Wang, Z., Luo, Y., Li, X., Wang, L., Xu, S., Yang, J., Weng, L., Sato, S., Tabata, S., Ambrose, M., Rameau, C., Feng, X., Hu, X., Luo, D. (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci, 105: 10414-10419
Weeden, N.F., Brauner, S., Przyborowski, J.A. (2002) Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Cell Mol Biol Lett, 7(2B): 657-663
Weigel, D., Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes. Cell, 78(2): 203-9
White, O.E. (1948) Fasciation. Botanical Review, 14(6): 319-358
Zelenov, A.N., Shchetinin, V.Y., Sobolev, D.V. (2008) Breeding value of pea form with dissected leaflet. Agrarnaya nauka, 2: 19-20 In Russian
Zhuang, L., Ambrose, M., Rameau, C., Weng, L., Yang, J., Hu, X., Luo, D.A., Li, X. (2012) LATHYROIDES, Encoding a WUSCHEL-Related Homeobox1 Transcription Factor, Controls Organ Lateral Growth, and Regulates Tendril and Dorsal Petal Identities in Garden Pea (Pisum sativum L.). Molecular Plant, 5(6): 1333-1345
 

O članku

jezik rada: engleski
vrsta rada: pregledni članak
DOI: 10.5937/ratpov50-4191
objavljen u SCIndeksu: 09.12.2013.
metod recenzije: dvostruko anoniman