Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 8 od 215  
Back povratak na rezultate
2020, vol. 36, br. 2, str. 239-250
Razvoj i uticaj Lactobacillus plantarum inokulanta na kvalitet silaže od zrna kukuruza
aAgrounik d.o.o., Research and Development Centre, Belgrade
bInstitut za stočarstvo, Beograd-Zemun
cBiounik d.o.o., Research and Development Centre, Belgrade

e-adresavioleta_randjelovic@yahoo.com
Projekat:
The research was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (No 451-03-2802/2013-16/120).
451-03-68/2020-14

Ključne reči: kukuruz; silaža; inokulant; Lactobacillus plantarum; hemijski sastav; fermentacione karakteristike
Sažetak
Cilj ovih istraživanja bio je karakterizacija i identifikacija bakterija mlečne kiseline (BMK) izolovanih iz netretirane silaže, kao i efekat odabranih bakterija (inokulant nazvan Silko za kukuruz) na siliranje vlažnog zrna kukuruza. Četiri izolata BMK (L1, L2, L3 i L4) su okarakterisani upotrebom fenotipskih testova i identifikovani filogenetskom analizom 16S rRNA kao L. plantarum. Vlažno zrno kukuruza silirano je sa Silkom za kukuruz, inokulantom koji je dostupan na tržištu (pozitivna kontrola) i bez primene inokulanta (netretirana; negativna kontrola). Nakon 60 dana od siliranja, rezultati su pokazali da su hemijski sastav i fermentacione karakteristike bolji u silažama tretiranim sa inokulantima u poređenju sa negativnom kontrolom. Sadržaj pepela, masti i mlečne kiseline bio je značajno veći u silažama tretiranim sa inokulantima nego u negativnoj kontroli. Sadržaj celuloze, kiselih (ADF) i neutralnih deterdžentskih vlakana (NDF), amonijačnog azota u ukupnom azotu i buterne kiseline (BA) bio je značajno niži u silaži tretiranoj sa Silkom za kukuruz nego u pozitivnoj kontroli. Silko za kukuruz poboljšava hranjivu vrednost i fermentaciju silaže od zrna kukuruza i predstavlja konkurentan proizvod na tržištu.
Reference
Abdul, R.N., Abd, H.M.R., Mahawi, N., Hasnudin, H., Al-Obaidi, J.R., Abdullah, N. (2017) Determination of the use of Lactobacillus plantarum and Propionibacterium freudenreichii application on fermentation profile and chemical composition of corn silage. BioMed Research International, 8
Aragón, Y.A. (2012) The use of probiotic strains as silage inoculants. u: Rigobelo E.C. [ur.] Probiotic in animals, Rijeka: Intech, 101: 3952-3979
Association of Official Analytical Chemists (AOAC) (2000) Official methods of analysis. Arlington, VA, USA, 17th edn
Borreani, G., Tabacco, E., Eschmidt, R.J., Holmes, B.J., Muck, R.E. (2018) Silage review: Factors affecting dry matter and quality losses in silages. Journal Dairy Science, 101: 3952-3979
Contreras-Gouveia, F., Muck, R. (2006) Microbial inoculants for silage. Focus on Forage, 8: 1-4
Contreras-Govea, F.E., Muck, R.E., Broderick, G.A., Weimer, P.J. (2013) Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Animal Feed Science and Technology, 179(1-4): 61-68
Đorđević, S., Mandić, V., Stanojević, D., Jovanović-Ljesković, N. (2017) Effects of Lactobacillus plantarum inoculants on maize silage quality. Biotechnology in Animal Husbandry, vol. 33, br. 1, str. 115-125
Ekundayo, F.O. (2014) Isolation and identification of lactic acid bacteria from rhizosphere soils of three fruit trees, fish and ogi. International Journal of Current Microbiology and Applied Science, 3: 991-998
Harris, L.J., Daeschel, M.A., Stiles, M.E., Klaenhammer, T.R. (1989) Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. Journal of Food Protection, 52(6): 384-387
Huhtanen, P., Nousiainen, J.I., Khalili, H., Jaakkola, S., Heikkilä, T. (2003) Relationships between silage fermentation characteristics and milk production parameters: Analyses of literature data. Livestock Production Science, 81(1): 57-73
Jalč, D., Lauková, A., Simonová, M., Váradyová, Z., Homolka, P. (2009) The use of bacterial inoculants for grass silage: Their effects on nutrient composition and fermentation parameters in grass silages. Czech Journal of Animal Science, 54( 2): 84-91
Jatkauskas, J., Vrotniakiene, V., Ohlsson, C., Lund, B. (2013) The effects of three silage inoculants on aerobic stability in grass, clover-grass, lucerne and maize silages. Agricultural and Food Science, 22(1): 137-144
Koc, F., Ozduven, L., Coskuntuna, M.L., Polant, C. (2009) The effects of inoculant lactic acid bacteria on the fermentation and aerobic stability of sunflower silage. Poljoprivreda, 15: 47-52
Kung, L., Shaver, R. (2001) Interpretation and use of silage fermentation analysis reports. Focus on Forage, 3: 1-5
Li, D., Ni, K., Pang, H., Wang, Y., Cai, Y., Jin, Q. (2015) Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian-Australasian Journal of Animal Sciences, 28: 620-631
Licitra, G., Hernandez, T.M., van Soest, P.J. (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 51: 347-358
Liu, Q., Shao, T., Bai, Y. (2016) The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, Alpha-tocopherol and beta-carotene of high moisture nippier grass silage ensiled at different temperatures. Animal Feed Science and Technology, 221: 1-11
López, U.S., Nieto, C.A.R., López, E.S., López, N.S., Rangel, P.P., Gil, A.P., Real, D. (2018) Yield of forage, grain and biomass in eight hybrids of maize with different sowing dates and environmental conditions. Revista Mexicana de Ciencias Pecuarias, 9: 86-104
Lynch, J.P., O'Kiely, P., Waters, S.M., Doyle, E.M. (2012) Conservation characteristics of corn ears and stover ensiled with the addition of Lactobacillus plantarum MTD-1, Lactobacillus plantarum 30114, or Lactobacillus buchneri 11A44. Journal of Dairy Science, 95(4): 2070-2080
Muck, R.E. (2013) Recent advances in silage microbiology. Agricultural and Food Science, 22(1): 2-15
Queiroz, O.C.M., Arriola, K.G., Daniel, J.L.P., Adesogan, A.T. (2013) Effects of 8 chemical and bacterial additives on the quality of corn silage. Journal of Dairy Science, 96(9): 5836-5843
Ren, H., Wang, C., Fan, W., Zhang, B., Li, Z., Li, D. (2018) Effects of formic or acetic acid on the storage quality of mixed air-dried corn stover and cabbage waste, and microbial community analysis. Food Technology and Biotechnology, 56: 71-82
Rooke, J.A., Hatfield, R.D. (2003) Biochemistry of ensiling. Lincoln, Nebraska: USDA-Agricultural research Service
Saarisalo, E., Skyttä, E., Haikara, A., Jalava, T., Jaakkola, S. (2007) Screening and selection of lactic acid bacteria strains suitable for ensiling grass. Journal of Applied Microbiology, 102: 327-336
Sadiya, S., Ibrahim, S.A. (2015) Studies on cellulose degrading microorganisms associated with rumen of ruminant animals. World Journal of Microbiology, 2: 26-32
Shaver, R.D. (2003) Practical application of new forage quality tests. u: Proceedings of the 6 th Western Dairy Management Conference, 12-14 March, Reno, USA, 17-26
Vukmirović, Đ.M., Palić, D.V., Čolović, R.R., Kokić, B.M., Brlek, T.I. (2011) The influence of Bonsilage Forte on fermentation and aerobic stability during alfalfa ensiling. Food and Feed Research, vol. 38, br. 2, str. 81-86
Zielińska, K.J., Fabiszewska, A.U. (2018) Improvement of the quality of maize grain silage by a synergistic action of selected lactobacilli strains. World Journal of Microbiology and Biotechnology, 34:9
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/BAH2002239D
objavljen u SCIndeksu: 26.07.2020.
Creative Commons License 4.0

Povezani članci