- citations in SCIndeks: 0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:7
- full-text downloads in 30 days:3
|
|
2021, vol. 37, iss. 2, pp. 139-147
|
Fungal contamination of pig farm feeds
Kontaminacija hrane za farmske svinje gljivama
aInstitute for Animal Husbandry, Belgrade-Zemun bUniversity of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry
email: vesnakrnjaja.izs@gmail.com
Project: Ministry of Education, Science and Technological Development, Republic of Serbia (Institution: Institute for Animal Husbandry, Belgrade-Zemun) (MESTD - 451-03-68/2020-14/200022)
Abstract
The aim of this study was to establish the total fungal (mould) count in 79 commercial pig farm feed samples (42 samples for piglets, 29 samples for fattening pigs and 8 samples for sows) collected from the Serbian feed producers during the three-year period (2017-2019), as well as to evaluate the percentage of contamination samples by fungi, especially species from Aspergillus, Fusarium and Penicillium genera. Using standard mycological methods, the total count and identification of fungi were determined. Total fungal count was ranging from 1×102 to 1.41×105 cfu g-1 in the feed samples for piglets. Furthermore, in the feed samples for fattening pigs it ranged from 1×102 to 2.54×105 cfu g-1, and from 1×102 to 1.93×105 cfu g-1 in the feed samples for sows. It has established the impermissible limit of total fungal count in 3.45% and 4.76% of a feed for fattening pigs and feed for piglets, respectively. Statistical analysis of the total number of fungi did not establish significant differences between the examined feed groups. Fusarium species were present in the most feed samples for fattening pigs (65.52%), followed by the feed for sows (62.50%) and piglets (47.62%). Aspergillus species were determined in 59.52, 58.62 and 37.50% feed samples for piglets, fattening pigs and sows, respectively. Penicillium species contaminated the lowest percentage of feed samples for fattening pigs (27.59%) and the highest percentage of feed samples for sows (37.50%). In a small number of samples Alternaria, Mucor, and Rhizopus species were identified. Based on these results, it can be concluded that the investigation of fungal contamination is an important indicator of a hygienic condition of feed intended for the nutrition of farm pigs. In addition, the percentage of fungal contamination of the examined samples indicates a potentially high risk to animal health. Due to that, a regular mycological evaluation is necessary to assess nutritional quality as one of the fundamental criteria for feed safety.
Sažetak
Cilj ovog istraživanja bio je da se utvrdi ukupan broj gljiva (plesni) u 79 komercijalnih uzoraka hrane za farmske svinje: za prasad (42 uzoraka), tovne svinje (29 uzoraka) i krmače (8 uzoraka), sakupljenih od različitih proizvođača stočne hrane u Srbiji tokom trogodišnjeg perioda (2017-2019), kao i da se oceni procenat kontaminiranosti uzoraka gljivama, posebno vrstama iz rodova Aspergillus, Fusarium and Penicillium. Primenom standardnih mikoloških metoda određen je ukupan broj i identifikacija gljiva. Ukupan broj gljiva bio je u rangu od 1×102 do 1.41×105 cfu g-1 u uzorcima hrane za prasad, od 1×102 do 2.54×105 cfu g-1 u uzorcima hrane za tovne svinje i od 1×102 do 1.93 ×105 cfu g-1 u uzorcima hrane za krmače. Ustanovljen je nedozvoljen ukupan broj gljiva u 3,45% uzoraka hrane za tovne svinje i u 4,76% uzoraka hrane za prasad. Statističkom analizom ukupnog broja gljiva nisu utvrđene značajne razlike između ispitivanih grupa hrane. Fusarium vrste bile su prisutne u najvećem broju uzoraka hrane za tovne svinje (65,52%), zatim u uzorcima hrane za krmače (62,50%) i prasad (47,62%). Aspergillus vrste bile su prisutne u 59,52% uzoraka hrane za prasad, 58,62% uzoraka hrane za tovne svinje i 37,50% uzoraka hrane za krmače. Penicillium vrste su kontaminirale najmanji broj uzoraka hrane za tovne svinje (27,59%) a najveći broj uzoraka hrane za krmače (37,50%). U malom broju uzoraka identifikovane su Alternaria, Mucor, and Rhizopus vrste. Na osnovu dobijenih rezultata može se zaključiti da je ukupan broj gljiva odličan pokazatelj higijenske ispravnosti hrane za farmske svinje. Pored toga, procenat kontaminiranih uzoraka gljivama ukazuje na potencijalno visok rizik za zdravlje životinja. Stoga, redovna mikološka analiza je neophodna za ocenu nutritivnog kvaliteta kao jednog od osnovnih kriterijuma za bezbednost hrane za životinje.
|
|
|
References
|
|
*** (2010) Regulation on the quality of animal feed (Pravilnik o kvalitetu hrane za životinje). Official Gazette of RS (Službeni glasnik RS), 4
|
|
Almeida, I.M., Marques, M.F., Torrado, E., Martins, H. (2009) Occurrence of mycobiota in swine feed. in: Current Research Topics in Applied Microbiology and Microbial Biotechnology, 407-411
|
|
Bakutis, B., Baliukoniene, V., Lugauskas, A. (2006) Factors predeterming the abundance of fungi and mycotoxins in grain from organic and conventional farms. Ekologija, 3: 122-127
|
1
|
Biagi, G. (2009) Dietary supplements for the reduction of mycotoxin intestinal absorption in pigs. Biotechnology in Animal Husbandry, vol. 25, br. 5-6-1, str. 539-546
|
|
Camardo, L.M., Decontardi, S., Bertuzzi, T., Pietri, A., Battilani, P. (2017) Modeling growth and toxin production of toxigenic fungi signaled in cheese under different temperature and water activity regimes. Toxins, 9: 4
|
|
Chiotta, M.L., Fumero, M.V., Cendoza, E., Palazzini, J.M., Alaniz-Zanon, M.S., Ramirez, M.L., Chulze, S.N. (2020) Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina de Microbiología, 52(4): 339-347
|
|
Christensen, C.M., Kaufmann, H.H. (1965) Deterioration of stored grains by fungi. Annual Review of Phytopathology, 3(1): 69-84
|
|
Dänicke, S., Brüssow, K.-P., Goyarts, T., Valenta, H., Ueberschär, K.-H., Tiemann, U. (2007) On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from the sow to the full-term piglet during the last third of gestation. Food and Chemical Toxicology, 45(9): 1565-1574
|
|
Ezekiel, C.N., Oyedele, O.A., Kraak, B., Ayeni, K.I., Sulyok, M., Houbraken, J., Krska, R. (2020) Fungal diversity and mycotoxins in low moisture content ready-to-eat foods in Nigeria. Frontiers in Microbiology, 11: 615
|
|
Fleurat-Lessard, F. (2015) Integrated approach of the prevention of mould spoilage risks and mycotoxin contamination of stored grain: A European perspective. Integrated Protection of Stored Products IOBC-WPRS Bulletin, 111: 235-260
|
|
Gebremeskel, A.F., Ngoda, P.N., Kamau-Mbuthia, E.W., Mahungu, S.M. (2019) Prevalence and controlling mechanisms of mycotoxin. Cogent Food and Agriculture, 5(1): 1658978
|
1
|
Giorni, P., Bertuzzi, T., Battilani, P. (2019) Impact of fungi co-occurrence on mycotoxin contamination in maize during the growing season. Frontiers in Microbiology, 10: 1265
|
|
Harčárová, M., Čonková, E., Sihelská, Z. (2018) Mycobiota and mycotoxic contamination of feed cereals. Folia Veterinaria, 62(4): 5-11
|
|
ISO (2008) Microbiology of food and animal feeding stuffs: Horizontal method for the enumeration of yeasts and moulds: Colony count technique in products with water activity less than or equal to 0,95. 21527-2, Part 2, 1-13
|
|
Kukier, E., Kwiatek, K. (2011) Microbiological quality of feed materials used in Poland. Bulletin of the Veterinary Institute in Pulawy, 55: 709-715
|
|
Magan, N., Hope, R., Cairns, V., Aldred, D. (2003) Post-harvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. European Journal of Plant Pathology, 109: 723-730
|
|
Mannaa, M., Kim, K.D. (2017) Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 45(4): 240-254
|
|
Manstretta, V., Rossi, V. (2016) Effects of temperature and moisture on development of Fusarium graminearum perithecia in maize stalk residues. Applied and Environmental Microbiology, 82(1): 184-191
|
|
Marković, R.V., Jovanović, N.D., Šefer, D.S., Sinovec, Z.J. (2005) Mould and mycotoxin contamination of pig and poultry feed. Journal of Natural Science, 109: 89-95
|
|
Milićević, D., Nikšić, M., Baltić, T., Vranić, D. (2010) Isolation characterization and evaluation of significant mycoflora and mycotoxins in pig feed from Serbian farms. World Journal of Microbiology and Biotechnology, 26(9): 1715-1720
|
1
|
Pereyra, C.M., Cavaglieri, L.R., Chiacchiera, S.M., Dalcero, A.M. (2011) Mycobiota and mycotoxins contamination in raw materials and finished feed intended for fattening pigs production in Eastern Argentina. Veterinary Research Communications, 35(6): 367-379
|
|
Pleadin, J., Zadravec, M., Perši, N., Vulić, A., Jaki, V., Mitak, M. (2012) Mould and mycotoxin contamination of pig feed in northwest Croatia. Mycotoxin Research, 28(3): 157-162
|
|
Vlachou, S., Zoiopoulos, P.E., Drosinos, E.H. (2004) Assessment of some hygienic parameters of animal feeds in Greece. Animal Feed Science and Technology, 117(3-4): 331-337
|
1
|
Watanabe, T. (2002) Pictorial atlas of soil and seed fungi. in: Morphologies of cultured fungi and key to species, Boca Raton: CRC Press, 486
|
|
|
|