Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:15
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 6 od 20  
Back povratak na rezultate
2018, vol. 59, br. 3, str. 385-393
Mangan u sistemu zemljište-biljka - aspekti fitoremedijacije
Univerzitet u Beogradu, Tehnički fakultet u Boru, Srbija

e-adresasalagic@tfbor.bg.ac.rs
Projekat:
Razvoj novih inkapsulacionih i enzimskih tehnologija za proizvodnju biokatalizatora i biološki aktivnih komponenata hrane u cilju povećanja njene konkurentnosti, kvaliteta i bezbednosti (MPNTR - 46010)
Neki aspekti rastvaranja metala i prirodnih minerala (MPNTR - 172031)

Ključne reči: biljka; fitoremedijacija; hiperakumulacija; mangan; zagađenje; zemljište
Sažetak
Iako se mangan (Mn) ne smatra metalom koji zagađuje zemljište u nekom značajnijem stepenu, njegove koncentracije u pojedinim regionima sveta dostižu sve veće nivoe. Kao jedna od efikasnijih metoda za uklanjanje viškova Mn može se razmatrati i metoda fitoremedijacije koja koristi prirodne sposobnosti biljaka da stabilizuju metale u samom zemljištu, ili da ih iz njega ekstrahuju i dalje akumuliraju u svojim tkivima. Biljke koje imaju sposobnost hiperakumulacije metala su od posebnog značaja za fitoremedijaciju, tako da su u ovom radu izložene brojne specifičnosti vezane za ponašanje Mn u sistemu zemljište-biljka, sa posebnim osvrtom na pojavu hiperakumulacije.
Reference
Alagić, S.Č. (2017) Various roles of plants in heavy metal phytoremediation from polluted soils. u: XII International Symposium 'Recycling technologies and sustainable development', Hotel Jezero, Bor Lake, Serbia, 13-15. September 2017, Proceedings, p. 33-40
Alagić, S.Č., Nujkić, M.M., Dimitrijević, M.D. (2014) Plants strategies against metal phytotoxicity as a key prerequisite for an effective phytoremediation: Excluders and hyperaccumulators: Part II. Zaštita materijala, vol. 55, br. 4, str. 435-440
Alagić, S.Č., Tošić, S.B., Dimitrijević, M.D., Antonijević, M.M., Nujkić, M.M. (2015) Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environmental Science and Pollution Research, 22(9): 7155-7175
Alagić, S.Č., Tošić, S.B., Dimitrijević, M.D., Petrović, J.V., Medić, D.V. (2017) Chemometric evaluation of trace metals in Prunus persica L. Batech and Malus domestica from Minićevo (Serbia). Food Chemistry, 217: 568-575
Alagić, S.Č. (2014) Plants strategies against metal phytotoxicity as a key prerequisite for an effective phytoremediation: Cellular mechanisms: Part I. Zaštita materijala, vol. 55, br. 3, str. 313-322
Alagić, S.Č., Šerbula, S.S., Tošić, S.B., Pavlović, A.N., Petrović, J.V. (2013) Bioaccumulation of Arsenic and Cadmium in Birch and Lime from the Bor Region. Archives of Environmental Contamination and Toxicology, 65(4): 671-682
Alloway, B.J. (2013) Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Environmental Pollution, 22, third edition. Springer, doi: 10.1007/978-94- 007-4470-7
Bhaduri, A.M., Fulekar, M.H. (2012) Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio/Technology, 11(1): 55-69
Bhargava, A., Carmona, F.F., Bhargava, M., Srivastava, S. (2012) Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105: 103-120
Boyd, R.S. (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil, 293(1-2): 153-176
Bradl, H.B. (2004) Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1): 1-18
Clemens, S., Palmgren, M.G., Krämer, U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 7(7): 309-315
Ducic, T., Polle, A. (2005) Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology, 17(1): 103-112
Hall, J.L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366): 1-11
Kabata-Pendias, A. (2011) Trace elements in soils and plants. Boca Raton, London, New York: CRC Press, Taylor and Francis Group, LLC, Fourth edition
Ličina, V., Akšić, M.F., Tomić, Z., Trajković, I., Antić, M.S., Marjanović, M., Rinklebe, J. (2017) Bioassessment of heavy metals in the surface soil layer of an opencast mine aimed for its rehabilitation. Journal of Environmental Management, 186: 240-252
Lin, Y., Aarts, M.G.M. (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 69(19): 3187-3206
Maric, M., Antonijevic, M., Alagic, S. (2013) The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil. Environmental Science and Pollution Research, 20(2): 1181-1188
Marques, A.P.G.C., Rangel, A.O.S.S., Castro, P.M.L. (2009) Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Critical Reviews in Environmental Science and Technology, 39(8): 622-654
Millaleo, R., Reyes-, D.M., Ivanov, A., Mora, M., Alberdi, M. (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of soil science and plant nutrition, 10(4): 470-481
Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M. (2010) Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3): 199-216
Negra, C., Ross, D.S., Lanzirotti, A. (2005) Soil Manganese Oxides and Trace Metals. Soil Science Society of America Journal, 69(2): 353
Palmer, C.M., Guerinot, M.L. (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5(5): 333-340
Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G., Gardea-Torresdey, J. (2009) The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. International Journal of Biochemistry & Cell Biology, 41(8-9): 1665-1677
Pittman, J.K. (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist, 167(3): 733-742
Prasad, M.N.V., de Oliveira, F.H.M. (2003) Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3):
Rascio, N., Navari-Izzo, F. (2011) Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science, 180(2): 169-181
Sarma, H. (2011) Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Technology. Journal of Environmental Science and Technology, 4(2): 118-138
Tošić, S., Alagić, S., Dimitrijević, M., Pavlović, A., Nujkić, M. (2016) Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution. Ambio, 45(4): 501-512
Vamerali, T., Bandiera, M., Mosca, G. (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8(1): 1-17
Verbruggen, N., Hermans, C., Schat, H. (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4): 759-776
Yang, Z., Chu, C. (2011) Towards understanding plant response to heavy metal stress. u: Shanker A., Venkateswarlu B. [ur.] Abiotic Stress in Plants: Mechanisms and Adaptations, InTech, pp. 59-78; DOI: 10.5772/24204. https://www. intechopen.com/books/abiotic-stress-in-plantsmechanisms-and-adaptations/towards-understandingplant-response-to-heavy-metal-stress
 

O članku

jezik rada: srpski
vrsta rada: pregledni članak
DOI: 10.5937/zasmat1803385P
objavljen u SCIndeksu: 06.09.2018.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka