Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 5 od 12  
Back povratak na rezultate
2013, vol. 17, br. 4, str. 158-162
Poboljšanje kvaliteta i stabilnosti netermičkom obradom kriški jabuke i kivija - pregled stanja
aUniversity of Bologna, Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Cesena, Italy
bUniversity of Life Sciences (WULS-SGGW), Faculty of Food Sciences, Department of Food Engineering and Process Management, Warsaw, Poland

e-adresatylewicz@unibo.it
Ključne reči: jabuka; kivi; netoplotna prerada voća; osmotska dehidracija; ultrazvuk; vakuum impregnacija
Sažetak
Netoplotne tehnike za preradu voća mogu biti dobra alternativa za toplotne metode, kako bi proizveli minimalno obrađeno voće i povrće. U ovom radu je predstavljen vrhunac nekih aplikacija osmotski dehidracije (OD), vakuum impregnacije (VI) i ultrazvučnog (US) tretmana na minimalno prerađene jabuke i kivi, u cilju da se pokaže potencijal ovih tehnika radi očuvanja kvaliteta i stabilnost. Primena OD procesa rezultira sa nekoliko pozitivnih efekata na ukupan kvalitet i stabilnost kivija. Pored poboljšanja teksture i očuvanja boje, primećeno je smanjenje mobilnosti i dostupnosti vode. Primena US promoviše dalje unapređenje voda/rastvorak razmenu sa modifikacijom strukture kivija. Vakuum impregnacija (VI) primenjena na tkivo jabuke promoviše značajne promene mase i gustine. Mikroskopska analiza pokazala _ je da rastvorak ulazi unutar ćelija.
Reference
Battey, N.H., James, N.C., Greenland, A.J., Brownlee, C. (1999) Exocytosis and Endocytosis. Plant Cell, 11(4): 643
Castelló, M.L., Fito, P.J., Chiralt, A. (2006) Effect of osmotic dehydration and vacuum impregnation on respiration rate of cut strawberries. LWT - Food Science and Technology, 39(10): 1171-1179
Castro-Giráldez, M., Tylewicz, U., Fito, P.J., dalla Rosa, M., Fito, P. (2011) Analysis of chemical and structural changes in kiwifruit (Actinidia deliciosa cv Hayward) through the osmotic dehydration. Journal of Food Engineering, 105(4): 599-608
Cram, W.J. (1980) Pinocytosis in plants. New Phytologist, 84(1): 1-17
Dalla, R.M., Bressa, F. (1995) Problematiche, tecnologie e derivati della trasformazione industriale dellactinidia. Frutticoltura, 4
dalla Rosa, M., Tylewicz, U., Panarese, V., Laghi, L., Pisi, A., Santagapita, P., Rocculi, P. (2011) Uticaj osmotske dehidracije na kivi - rezultati multianalitičkog pristupa proučavanja strukture. Journal on Processing and Energy in Agriculture, vol. 15, br. 3, str. 113-117
Emans, N. (2002) Uptake of a Fluorescent Marker in Plant Cells Is Sensitive to Brefeldin A and Wortmannin. Plant Cell Online, 14(1): 71-86
Etxeberria, E., Gonzalez, P., Pozueta, J. (2009) Evidence for two endocytic transport pathways in plant cells. Plant Science, 177(4): 341-348
Fernandes, F.A.N., Rodrigues, S. (2008) Application of Ultrasound and Ultrasound-Assisted Osmotic Dehydration in Drying of Fruits. Drying Technology, 26(12): 1509-1516
Holdsworth, S.D. (2008) Principles of thermal processing: Sterilization. u: Simpson Ricardo [ur.] Engineering Aspects of Thermal Food Processing, Part I: Fundamentals and New Processes, CRC Press Taylor & Francis Group, LLC, Chapter 1
Janositz, A., Noack, A.K., Knorr, D. (2011) Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT - Food Science and Technology, (44): 1939-1945
Karel, M., Lund, D.B. (2003) Nonthermal methods. u: Physical Principles of Food Preservation, CRC Press, Chapter 11
Knorr, D., Zenker, M., Heinz, V., Lee, D. (2004) Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5): 261-266
Lazarides, H.N., Fito, P., Chiral, A., Gekas, V., Lenart, A. (1999) Advances in osmotic dehydration. u: Oliveira Jorge C., Fernanda A.R. [ur.] Processing Foods: Quality Optimization and Process Assessment, CRC Press, Chapter 11
Nowacka, M., Tylewicz, U., Laghi, L., dalla Rosa, M., Witrowa-Rajchert, D. (2014) Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 144: 18-25
Panarese, V., Laghi, L., Pisi, A., Tylewicz, U., Rosa, M.D., Rocculi, P. (2012) Effect of osmotic dehydration on Actinidia deliciosa kiwifruit: A combined NMR and ultrastructural study. Food Chemistry, 132(4): 1706-1712
Panarese, V., Tylewicz, U., Santagapita, P., Rocculi, P., Rosa, M.D. (2012) Isothermal and differential scanning calorimetries to evaluate structural and metabolic alterations of osmo-dehydrated kiwifruit as a function of ripening stage. Innovative Food Science & Emerging Technologies, 15: 66-71
Ramaswamy, H., Marcotte, M. (2006) Chapter 3: Thermal processing. u: Food Processing: Principles and Applications, CRC Press by Taylor & Francis Group, LLC, str. 69-172
Rastogi, N.K. (2010) Opportunities and challenges in nonthermal processing of food: Chapter 1. u: Passos M.L., Ribeiro C.P. [ur.] Innovation in Food Engineering: New Techniques and Products, CRC Press Taylor & Francis Group
Rocculi, P., Panarese, V., Tylewicz, U., Santagapita, P., Cocci, E., Galindo, G.F., Romani, S., Rosa, D.M. (2012) Isothermal calorimetry studies on the stability of fresh-cut fruit. LWT - Food Science and Technology, 49(2): 320-323
Rzạca, M., Witrowa-Rajchert, D., Tylewicz, U., Rosa, D.M. (2009) Mass exchange in osmotic dehydration process of kiwi fruits. Żywność - Nauka - Technologia - Jakość, 6(67): 140-149
Santagapita, P., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., Rosa, M.D. (2013) Modification of Transverse NMR Relaxation Times and Water Diffusion Coefficients of Kiwifruit Pericarp Tissue Subjected to Osmotic Dehydration. Food and Bioprocess Technology, 6(6): 1434-1443
Tylewicz, U., Rzạca, M., Rocculi, P., Romani, S., Rosa, D.M. (2010) Evolution of quality characteristics of Hayward and Hort 16A kiwifruit during osmotic dehydration. Fruit Processing, (4): 150-153
Tylewicz, U., Lundin, P., Cocola, L., Dymek, K., Rocculi, P., Svanberg, S., Dejmek, P., Galindo, F.G. (2012) Gas in Scattering Media Absorption Spectroscopy (GASMAS) Detected Persistent Vacuum in Apple Tissue After Vacuum Impregnation. Food Biophysics, 7(1): 28-34
Tylewicz, U., Panarese, V., Laghi, L., Rocculi, P., Nowacka, M., Placucci, G., Rosa, M.D. (2011) NMR and DSC Water Study During Osmotic Dehydration of Actinidia deliciosa and Actinidia chinensis Kiwifruit. Food Biophysics, 6(2): 327-333
Tylewicz, U., Romani, S., Widell, S., Galindo, F.G. (2013) Induction of Vesicle Formation by Exposing Apple Tissue to Vacuum Impregnation. Food and Bioprocess Technology, 6(4): 1099-1104
Velickova, E., Tylewicz, U., Rosa, D.M., Winkelhausen, E., Kuzmanova, S., Galindo, G.F. (2013) Effect of vacuum infused cryoprotectants on the freezing tolerance of strawberry tissues. LWT - Food Science and Technology, 52(2): 146-150
Zhang, H.Q., Barbosa-Canovas, G.V., Balasubramaniam, V.M., Dunne, C.P., Farkas, D.F., Yuan, J.T.C. (2011) Nonthermal processing technologies for food. IFT Press-Wiley-Blackwell
Zheng, L., Sun, D. (2006) Innovative applications of power ultrasound during food freezing processes-a review. Trends in Food Science & Technology, 17(1): 16-23
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljen u SCIndeksu: 10.12.2013.