Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:18
  • preuzimanja u poslednjih 30 dana:14

Sadržaj

članak: 4 od 10  
Back povratak na rezultate
Računarstvo visokih performansi u višeskalnom modelovanju, teoriji grafova i optimizaciji zasnovanoj na metaheuristikama
aUniverzitet u Kragujevcu, Prirodno-matematički fakultet
bUniverzitet u Kragujevcu, Ekonomski fakultet
cDepartment of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, SAD

e-adresamivanovic@kg.ac.rs
Projekat:
Primena biomedicinskog inženjeringa u pretkliničkoj i kliničkoj praksi (MPNTR - 41007)
Metode modeliranja na više skala sa primenama u biomedicini (MPNTR - 174028)

Ključne reči: paralelno računarstvo; modelovanje mišića; grid; računarstvo u oblaku
Sažetak
Jedna od glavnih aktivnosti Grupe za naučne proračune na PMF-u u Kragujevcu su metode efikasne upotrebe paralelnih računarskih arhitektura, kao što su klasteri SMP čvorova, sistemi sa deljenom memorijom i grafički procesori. Primarni ciljevi su dizajn, razvoj i implementacija paralelnih algoritama i struktura podataka prilikom rešavanja fundamentalnih problema nauke i tehnike. MPI je važna programska paradigma koja još uvek postavlja različite izazove, naročito kada se kombinuje sa drugim programskim modelima, kao što je CUDA. Pored standardne HPC (High Performance Computing) baterije alata, unutar Grupe je prisutna i ekspertiza za alate kao što su Hadoop i Spark. U ovom radu će biti dat pregled rezultata Grupe koji se odnose na konkretne aplikacije na računarskim sistemima velikih razmera, zajedno sa referencama u vidu originalnih članaka. Prvi deo se bavi višeskalnim modeliranjem mišića u hibridnom MPI-CUDA okruženju. Naš pristup kombinuje konačne elemente na makro planu i Hakslijev kinetički model mišića na mikro planu. Originalni pristup raspoređivanja zadataka na procesore i grafičke procesore osigurava dobar balans opterećenja, što dovodi do ubrzanja od preko dva reda veličine i visoke skalabilnosti. U drugom delu se razmatra upotrebna vrednost HPC-a u okviru teorije grafova, a u svrhu postavljanja osnovnih strukturnih osobina stabala sa minimalnim ABC indeksom. U svrhu analize ogromne količine podataka, koriste se skladišni i računski resursi na gridu, čime se postiže ubrzanje od tri reda veličine. Poslednji deo se bavi WoBinGo softverskim okvirom za rešavanje zahtevnih optimizacionih problema na HPC resursima. Okvir prevazilazi ograničenja ranijih statičkih infrastruktura zasnovanih na pilot poslovima tako što omogućava elastičnu upotrebu resursa pomoću adaptivne alokacije poslova ograničenog životnog veka. Rezultati ukazuju da, uprkos štedljivoj upotrebi resursa, dobijamo značajno ubrzanje kada se radi o optimizacijama sa skupim evaluacijama, kao što je slučaj u oblasti hidro-informatike i upravljanju tržišnim rizikom.
Reference
Alba, E., Tomassini, M. (2002) Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 6(5): 443-462
Cantú-Paz, E., Goldberg, D.E. (2000) Efficient parallel genetic algorithms: theory and practice. Computer Methods in Applied Mechanics and Engineering, 186(2-4): 221-238
Chen, J., Guo, X. (2011) Extreme atom-bond connectivity index of graphs. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 65, br. 3, str. 713-722
Das, K.Ch., Gutman, I., Furtula, B. (2011) On atom-bond connectivity index. Chemical Physics Letters, 511(4-6): 452-454
Dorronsoro, B., Arias, D., Luna, F., Nebro, A.J., Alba, E. (2007) A grid-based hybrid cellular genetic algorithm for very large scale instances of the CVRP. u: High Performance Computing & Simulation Conference, HPCS, pp. 759-765
Drenovak, M., Ranković, V., Ivanović, M., Urošević, B., Jelic, R. (2017) Market risk management in a post-Basel II regulatory environment. European Journal of Operational Research, 257(3): 1030-1044
Duke, T.A.J. (1999) Molecular model of muscle contraction. Proceedings of the National Academy of Sciences, 96(6): 2770-2775
Estrada, E., Torres, L., Rodriguez, L., Gutman, Ivan. (1998) An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 37(10): 849-855
Estrada, E. (2008) Atom-bond connectivity and the energetic of branched alkanes. Chemical Physics Letters, 463(4-6): 422-425
Fernandez, J.W., Buist, M.L., Nickerson, D.P., Hunter, P.J. (2005) Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: A finite element framework. Medical Engineering & Physics, 27(10): 862-870
Foster (1995) Designing and Building Parallel Programs. Addison-Wesley Reading
Furtula, B., Gutman, I., Ivanović, M., Vukičević, D. (2012) Computer search for trees with minimal ABC index. Applied Mathematics and Computation, 219(2): 767-772
Goldberg, D.E. (1989) Genetic algorithms in search: Optimization and machine learning. Reading, MA, itd: Addison-Wesley
Gutman, I., Tošović, J., Radenković, S., Marković, S. (2012) On atom-bond connectivity index and its chemical applicability. Indian J. Chem. A, p. 690-694. 51
Gutman, I., Furtula, B., Ivanović, M. (2012) Notes on trees with minimal atom-bond connectivity index. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 67, br. 2, str. 467-482
Heidlauf, T., Röhrle, O. (2013) Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS. Computational and Mathematical Methods in Medicine, 2013: 1-14
Hill, A.V. (1938) The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society, vol. 8, br. 126, str. 136-195
Huxley, A.F. (1957) Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., vol. 7; pp. 255-318
Ivanovic, M., Stojanovic, B., Kaplarevic-Malisic, A., Gilbert, R., Mijailovich, S. (2015) Distributed multi-scale muscle simulation in a hybrid MPI-CUDA computational environment. Simulation, 92(1): 19-31
Ivanovic, M., Simic, V., Stojanovic, B., Kaplarevic-Malisic, A., Marovic, B. (2015) Elastic grid resource provisioning with WoBinGO: A parallel framework for genetic algorithm based optimization. Future Generation Computer Systems, 42: 44-54
Kojić, M.R., Mijailović, S., Zdravković, N. (1998) Modelling of muscle behaviour by the finite element method using Hill's three-element model. Int. J. Numer. Meth. Eng, 43(5): 941-953
Lister, M. (1977) The numerical solution of hyperbolic partial differential equations by the method of characteristics. u: Numerical Methods for Partial Differential Equations, str. 165-229
Marović, B., Potočnik, M., Čukanović, B. (2001) Multi-application bag of jobs for interactive and on-demand computing. Scalable Comput. Pract. Exp., 10
McMahon, T.A. (1984) Muscles, reflexes and locomotion. Princeton, NJ: Princeton University Press
Mijailovich, S.M., Fredberg, J.J., Butler, J.P. (1996) On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophysical Journal, 71(3): 1475-1484
Munawar, A., Wahib, M., Munetomo, M., Akama, K. (2008) A Survey: Genetic Algorithms and the Fast Evolving World of Parallel Computing. u: 2008 10th IEEE International Conference on High Performance Computing and Communications, pp. 897-902
Quinn, M.J. (2004) Parallel programming in C with MPI and OpenMP. Dubuque, Iowa: McGraw-Hill
Razumova, M.V., Bukatina, A.E., Campbell, K.B. (1999) Stiffness-distortion sarcomere model for muscle simulation. J. Appl. Physiol, vol. 87, no. 5, pp. 1861-76
Röhrle, O., Davidson, J.B., Pullan, A.J. (2012) A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function. Frontiers in Physiology, 3: 358
Smith, D.A., Geeves, M.A., Sleep, J., Mijailovich, S.M. (2008) Towards a Unified Theory of Muscle Contraction. I: Foundations. Annals of Biomedical Engineering, 36(10): 1624-1640
Torelli, A. (1997) Study of a mathematical model for muscle contraction with deformable elements. Rend. Sem. Mat. Univ. Politec. Torino, vol. 55, pp. 241-271
Zajac, F.E. (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17(4): 359-411
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/jsscm1601050I
objavljen u SCIndeksu: 25.03.2017.

Povezani članci

J Serb Soc Comp Mech (2016)
Multi-modelovanje i modelovanje na više skala kao alati za rešavanje složenih realnih problema
Stojanović Boban, i dr.

Fizička kultura (1996)
Sila (jačina) i snaga u pokretima čoveka
Jarić Slobodan M., i dr.

Serb J Electr Engineering (2015)
Hill's and Huxley's muscle models: Tools for simulations in biomechanics
Jovanović Kosta, i dr.

prikaži sve [34]