Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:18
  • full-text downloads in 30 days:17

Contents

article: 8 from 10  
Back back to result list
2016, vol. 10, iss. 1, pp. 135-150
Study of the mechanisms of antioxidative action of different antioxidants
State University of Novi Pazar, Department of Chemical-Technological Sciences + Bioengineering Research and Development Center - BioIRC, Kragujevac

emailzmarkovic@np.ac.rs
Project:
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions (MESTD - 172015)
Multiscale Methods and Their Applicatios in Nanomedicine (MESTD - 174028)

Keywords: DFT; antioxidants; HAT; PCET; SPLET
Abstract
The reaction mechanisms by which antioxidants can exert their activity are: hydrogen atom transfer (HAT), proton coupled electron transfer (PCET), sequential proton loss electron transfer (SPLET), single electron transfer - proton transfer (SET-PT), radical adduct formation, and sequential proton loss hydrogen atom transfer. The antioxidative activity of different compounds (flavones, flavonols, and Schiff basis) was investigated by the trolox equivalent antioxidative capacity and electron paramagnetic resonance methods. The mechanisms of the antioxidative action (HAT, PCET, SPLET, and SET-PT) were investigated by using the thermodynamic parameters: bond dissociation enthalpy, ionization potential, proton dissociation enthalpy, proton affinity, and electron-transfer enthalpy. The influence of different radicals was investigated using appropriate isodesmic reactions. The mechanistic approach to the investigation of the influence of different radicals to the HAT mechanism, and the second step of the SET-PT mechanism) was applied. These investigations contribute to the elucidation and understanding of complex processes involved in the antioxidative action.
References
Álvarez-Diduk, R., Galano, A. (2015) Adrenaline and Noradrenaline: Protectors against Oxidative Stress or Molecular Targets?. Journal of Physical Chemistry B, 119(8): 3479-3491
Ames, B.N., Shigenaga, M.K., Hagen, T.M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA, 90(17): 7915-22
Anouar, E.H., Raweh, S., Bayach, I., Taha, M., Baharudin, M.S., di Meo, F., Hasan, M.H., Adam, A., Ismail, N.H., Weber, J.F., Trouillas, P. (2013) Antioxidant properties of phenolic Schiff bases: structure–activity relationship and mechanism of action. Journal of Computer-Aided Molecular Design, 27(11): 951-964
Barber, S.C., Mead, R.J., Shaw, P.J. (2006) Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta, 1762 (11-12), str. 1051-67
Barnham, K.J., Masters, C.L., Bush, A.I. (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3(3): 205-14
Cheng, L., Tang, J., Luo, H., Jin, X., Dai, F., Yang, J., Qian, Y., Li, X., Zhou, B. (2010) Antioxidant and antiproliferative activities of hydroxyl-substituted Schiff bases. Bioorganic & Medicinal Chemistry Letters, 20(8): 2417-2420
Dhiman, S.B., Kamat, J.P., Naik, D.B. (2009) Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies. Chemico-Biological Interactions, 182(2-3): 119-127
di Meo, F., Lemaur, V., Cornil, J., Lazzaroni, R., Duroux, J., Olivier, Y., Trouillas, P. (2013) Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. Journal of Physical Chemistry A, 117(10): 2082-2092
Dimitrić-Marković, J.M., Milenković, D., Amić, D., Popović-Bijelić, A., Mojović, M., Pašti, I.A., Marković, Z.S. (2014) Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms. Structural Chemistry, 25(6): 1795-1804
Dimitrić-Marković, J.M., Milenković, D., Amić, D., Mojović, M., Pašti, I., Marković, Z.S. (2014) The preferred radical scavenging mechanisms of fisetin and baicalein towards oxygen-centred radicals in polar protic and polar aprotic solvents. RSC Advances, 4(61): 32228
Dimitrić-Marković, J.M., Pejin, B., Milenković, D., Amić, D., Begović, N., Mojović, M., Marković, Z.S. (2017) Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chemistry, 218: 440-446
Đorović, J., Dimitrić-Marković, J.M., Stepanić, V., Begović, N., Amić, D., Marković, Z. (2014) Influence of different free radicals on scavenging potency of gallic acid. Journal of Molecular Modeling, 20(7): 2345
Ezabadi, I.R., Camoutsis, C., Zoumpoulakis, P., Geronikaki, A., Soković, M., Glamočilija, J., Ćirić, A. (2008) Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorganic & Medicinal Chemistry, 16(3): 1150-1161
Fang, Y., Yang, S., Wu, G. (2002) Free radicals, antioxidants, and nutrition. Nutrition, 18(10): 872-9
Foti, M.C. (2007) Antioxidant properties of phenols. Journal of Pharmacy and Pharmacology, 59(12): 1673-1685
Foti, M.C., Daquino, C., Geraci, C. (2004) Electron-Transfer Reaction of Cinnamic Acids and Their Methyl Esters with the DPPH•Radical in Alcoholic Solutions. Journal of Organic Chemistry, 69(7): 2309-2314
Galano, A. (2015) Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols. J. Mex. Chem. Soc., 231-262; 59
Galano, A., Alvarez-Idaboy, J.R. (2013) A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. Journal of Computational Chemistry, 34(28): 2430-2445
Galano, A. (2011) On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Physical Chemistry Chemical Physics, 13(15): 7178
Galano, A., Alvarez-Idaboy, J. R. (2009) Guanosine + OH Radical Reaction in Aqueous Solution: A Reinterpretation of the UV−vis Data Based on Thermodynamic and Kinetic Calculations. Organic Letters, 11(22): 5114-5117
Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J. R., Russo, N. (2016) Food Antioxidants: Chemical Insights at the Molecular Level. Annual Review of Food Science and Technology, 7(1): 335-352
Galano, A., Tan, D.X., Reiter, R.J. (2012) On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. Journal of Pineal Research, 54(3): 245-257
Galano, A., Tan, D.X., Reiter, R.J. (2014) Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Advances, 4(10): 5220
Hodnett, E.M., Dunn, W.J. (1970) Structure-antitumor activity correlation of some Schiff bases. Journal of Medicinal Chemistry, 13(4): 768-770
Hussein, M.A. (2011) A Convenient Mechanism for the Free Radical Scavenging Activity of Resveratrol. Int. J. Phytomedicine, 459-469; 3
Iuga, C., Alvarez-Idaboy, J. R., Russo, N. (2012) Antioxidant Activity oftrans-Resveratrol toward Hydroxyl and Hydroperoxyl Radicals: A Quantum Chemical and Computational Kinetics Study. Journal of Organic Chemistry, 77(8): 3868-3877
Ivanović, N., Jovanović, L., Marković, Z., Marković, V., Joksović, M.D., Milenković, D., Djurdjević, P.T., Ćirić, A., Joksović, L. (2016) Potent 1,2,4-Triazole-3-thione Radical Scavengers Derived from Phenolic Acids: Synthesis, Electrochemistry, and Theoretical Study. ChemistrySelect, 1(13): 3870-3878
Jeremić, S., Filipović, N., Peulić, A., Marković, Z. (2014) Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study. Computational and Theoretical Chemistry, 1047: 15-21
Jeremić, S.R., Šehović, S.F., Manojlović, N.T., Marković, Z.S. (2011) Antioxidant and free radical scavenging activity of purpurin. Monatshefte für Chemie - Chemical Monthly, 143(3): 427-435
Joshi, R., Gangabhagirathi, R., Venu, S., Adhikari, S., Mukherjee, T. (2011) Antioxidant activity and free radical scavenging reactions of gentisic acid:in-vitroand pulse radiolysis studies. Free Radical Research, 46(1): 11-20
Kane, J.M., Dudley, M.W., Sorensen, S.M., Miller, F.P. (1988) 2,4-Dihydro-3H-1,2,4-triazole-3-thiones as potential antidepressant agents. Journal of medicinal chemistry, 31(6): 1253-8
Khan, K.M., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S., Choudhary, M. I. (2012) Acylhydrazide Schiff Bases: DPPH Radical and Superoxide Anion Scavengers. Medicinal Chemistry, 8(4): 705-710
Khan, K.M., Shah, Z., Ahmad, V.U., Khan, M., Taha, M., Rahim, F., Ali, S., Ambreen, N., Perveen, S., Choudhary, M. I., Voelter, W. (2012) 2,4,6-Trichlorophenylhydrazine Schiff Bases as DPPH Radical and Super Oxide Anion Scavengers. Medicinal Chemistry, 8(3): 452-461
Khiati, Z., Othman, A.A., Sanchez-Moreno, M., Bernard, M.-C., Joiret, S., Sutter, E.M.M., Vivier, V. (2011) Corrosion inhibition of copper in neutral chloride media by a novel derivative of 1,2,4-triazole. Corrosion Science, 53(10): 3092-3099
Khiati, Z., Othman, A.A., Sanchez-Moreno, M., Bernard, M.-C., Joiret, S., Sutter, E.M.M., Vivier, V. (2011) Corrosion inhibition of copper in neutral chloride media by a novel derivative of 1,2,4-triazole. Corrosion Science, 53(10): 3092-3099
Klein, E., Lukes, V., Ilcin, M. (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics, 336(1): 51-57
León-Carmona, J.R., Galano, A. (2011) Is Caffeine a Good Scavenger of Oxygenated Free Radicals?. Journal of Physical Chemistry B, 115(15): 4538-4546
Litwinienko, G., Ingold, K.U. (2004) Abnormal Solvent Effects on Hydrogen Atom Abstraction. 2. Resolution of the Curcumin Antioxidant Controversy. The Role of Sequential Proton Loss Electron Transfer. Journal of Organic Chemistry, 69(18): 5888-5896
Litwinienko, G., Ingold, K.U. (2005) Abnormal Solvent Effects on Hydrogen Atom Abstraction. 3. Novel Kinetics in Sequential Proton Loss Electron Transfer Chemistry. Journal of Organic Chemistry, 70(22): 8982-8990
Litwinienko, G., Ingold, K.U. (2007) Solvent Effects on the Rates and Mechanisms of Reaction of Phenols with Free Radicals. Accounts of Chemical Research, 40(3): 222-230
Litwinienko, G., Ingold, K.U. (2003) Abnormal Solvent Effects on Hydrogen Atom Abstractions. 1. The Reactions of Phenols with 2,2-Diphenyl-1-picrylhydrazyl (dpph•) in Alcohols. Journal of Organic Chemistry, 68(9): 3433-3438
Lleó, A., Greenberg, S.M., Growdon, J.H. (2006) Current Pharmacotherapy for Alzheimer's Disease. Annual Review of Medicine, 57(1): 513-533
Lozier, R.H., Bogomolni, R.A., Stoeckenius, W. (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophysical Journal, 15(9): 955-962
Marino, T., Galano, A., Russo, N. (2014) Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. Journal of Physical Chemistry B, 118(35): 10380-10389
Marković, Z., Milenković, D., Đorović, J., Jeremić, S. (2013) Solvation enthalpies of the proton and electron in polar and non-polar solvents. Journal of Serbian Society for Computational Mechanics, vol. 7, br. 2, str. 1-9
Marković, Z., Milenković, D., Đorović, J., Dimitrić-Marković, J.M., Stepanić, V., Lučić, B., Amić, D. (2012) Free radical scavenging activity of morin 2′-O− phenoxide anion. Food Chemistry, 135(3): 2070-2077
Marković, Z., Amić, D., Milenković, D., Dimitrić-Marković, J.M., Marković, S. (2013) Examination of the chemical behavior of the quercetin radical cation towards some bases. Physical Chemistry Chemical Physics, 15(19): 7370
Marković, Z., Đorović, J., Dimitrić-Marković, J.M., Živić, M., Amić, D. (2014) Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. Monatshefte für Chemie - Chemical Monthly, 145(6): 953-962
Marković, Z., Milenković, D., Đorović, J., Dimitrić-Marković, J.M., Stepanić, V., Lučić, B., Amić, D. (2012) PM6 and DFT study of free radical scavenging activity of morin. Food Chemistry, 134,1754-1760
Marković, Z.S., Dimitrić-Marković, J.M., Doličanin, Ć.B. (2010) Mechanistic pathways for the reaction of quercetin with hydroperoxy radical. Theoretical Chemistry Accounts, 127(1-2): 69-80
Marković, Z.S., Dimitrić-Marković, J.M., Doličanin, Ć.B. (2009) Mechanistic pathways for the reaction of quercetin with hydroperoxy radical. Theoretical Chemistry Accounts, 127(1-2): 69-80
Marković, Z.S., Dimitrić-Marković, J.M., Milenković, D., Filipović, N. (2011) Mechanistic study of the structure–activity relationship for the free radical scavenging activity of baicalein. Journal of Molecular Modeling, 17(10): 2575-2584
Marković, Z.S., Marković, S., Dimitrić-Marković, J.M., Milenković, D. (2011) Structure and reactivity of baicalein radical cation. International Journal of Quantum Chemistry, 112(8): 2009-2017
Mavrova, A.T., Wesselinova, D., Tsenov, Y.A., Denkova, P. (2009) Synthesis, cytotoxicity and effects of some 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives on immunocompetent cells. Eur. J. Med. Chem., 63-69; 44
Mazzone, G., Galano, A., Alvarez-Idaboy, J.R., Russo, N. (2016) Coumarin–Chalcone Hybrids as Peroxyl Radical Scavengers: Kinetics and Mechanisms. Journal of Chemical Information and Modeling, 56(4): 662-670
Medina, M.E., Galano, A., Alvarez-Idaboy, J.R. (2014) Theoretical study on the peroxyl radicals scavenging activity of esculetin and its regeneration in aqueous solution. Phys. Chem. Chem. Phys., 16(3): 1197-1207
Mendoza–Wilson, A.M., Castro-Arredondo, S.I., Balandrán-Quintana, R.R. (2014) Computational study of the structure–free radical scavenging relationship of procyanidins. Food Chemistry, 161: 155-161
Min, D.B., Boff, J.M. (2002) Chemistry and Reaction of Singlet Oxygen in Foods. Comprehensive Reviews in Food Science and Food Safety, 1(2): 58-72
Mohammed, K.K., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S., Iqbal, C.M. (2012) Acylhydrazide Schiff Bases: DPPH Radical and Superoxide Anion Scavengers. Medicinal Chemistry, 8(4): 705-710
Mohammed, K.K., Shah, Z., Uddin, A.V., Khan, M., Taha, M., Rahim, F., Ali, S., Ambreen, N., Perveen, S., Iqbal, C.M., Voelter, W. (2012) 2,4,6-Trichlorophenylhydrazine Schiff Bases as DPPH Radical and Super Oxide Anion Scavengers. Medicinal Chemistry, 8(3): 452-461
Moosmann, B., Behl, C. (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opinion on Investigational Drugs, 11(10): 1407-1435
Musialik, M., Kuzmicz, R., Pawłowski, T.S., Litwinienko, G. (2009) Acidity of Hydroxyl Groups: An Overlooked Influence on Antiradical Properties of Flavonoids. Journal of Organic Chemistry, 74(7): 2699-2709
Musialik, M., Litwinienko, G. (2005) Scavenging of dpph•Radicals by Vitamin E Is Accelerated by Its Partial Ionization:  the Role of Sequential Proton Loss Electron Transfer. Organic Letters, 7(22): 4951-4954
Ozaslan, M., Karagoz, I.D., Kilic, I.H., Guldur, M.E. (2011) Ehrlich ascites carcinoma. African J. Biotechnol, 2375-2378; 10
Palaska, E., Sahin, G., Kelicen, P., Durlu, T.N., Altinok, G. (2002) Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco (Società chimica italiana : 1989), 57(2): 101-7
Parker, J.E., Warrilow, A.G.S., Cools, H.J., Martel, C.M., Nes, W.D., Fraaije, B.A., Lucas, J.A., Kelly, D.E., Kelly, S.L. (2010) Mechanism of Binding of Prothioconazole to Mycosphaerella graminicola CYP51 Differs from That of Other Azole Antifungals. Applied and Environmental Microbiology, 77(4): 1460-1465
Plech, T., Kaproń, B., Łuszczki, J.J., Paneth, A., Siwek, A., Kołaczkowski, M., Żołnierek, M., Nowak, G. (2014) Studies on the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones and their effect on GABAergic system. European Journal of Medicinal Chemistry, 86: 690-699
Radecka-Paryzek, W., Pospieszna-Markiewicz, I., Kubicki, M. (2007) Self-assembled two-dimensional salicylaldimine lanthanum(III) nitrate coordination polymer. Inorganica Chimica Acta, 360(2): 488-496
Rose, R.C., Bode, A.M. (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J., 1135-1142; 7
Sayre, L.M., Perry, G., Smith, M.A. (2008) Oxidative Stress and Neurotoxicity. Chemical Research in Toxicology, 21(1): 172-188
Taha, M., Ismail, N., Jamil, W., Yousuf, S., Jaafar, F., Ali, M., Kashif, S., Hussain, E. (2013) Synthesis, Evaluation of Antioxidant Activity and Crystal Structure of 2,4-Dimethylbenzoylhydrazones. Molecules, 18(9): 10912-10929
Tamba, M., Torreggiani, A. (1999) Hydroxyl radical scavenging by carnosine and Cu(II)-carnosine complexes: a pulse-radiolysis and spectroscopic study. International Journal of Radiation Biology, 75(9): 1177-1188
Troadec, J., Marien, M., Darios, F., Hartmann, A., Ruberg, M., Colpaert, F., Michel, P.P. (2008) Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. Journal of Neurochemistry, 79(1): 200-210
 

About

article language: English
document type: unclassified
DOI: 10.5937/jsscm1601135M
published in SCIndeks: 25/03/2017