Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:16
  • full-text downloads in 30 days:14

Contents

article: 10 from 10  
Back back to result list
2016, vol. 10, iss. 1, pp. 168-189
Ultrasonic evaluation of intact, healing and osteoporotic long bones
aUnit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
bDepartment of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
cDepartment of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
dUnit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece + Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Department of Biomedical Research, Ioannina, Greece

emailvpotsika@cc.uoi.gr, vprotop@cc.uoi.gr, grivas@mech.upatras.gr, gortsas@mech.upatras.gr, mvavva@cc.uoi.gr, malizos@med.uth.gr, polyzos@mech.upatras.gr, fotiadis@cc.uoi.gr
Keywords: ultrasound; long bones; guided waves; scattering; fracture healing; osteoporosis
Abstract
Quantitative ultrasound (QUS) has been introduced in recent years for the comprehensive non-invasive and non-ionizing evaluation of bones. This paper presents a review of our research work of the last decade including experimental and computational studies for the ultrasonic assessment of fracture healing and osteoporosis. The axial transmission and the backscattering methods have been applied to investigate the variation of ultrasound velocity, the propagation of guided waves and the interaction of the complex scattering phenomena with bones. In the macrostructure level, computational models have been established mimicking healthy and pathologic bones, while the use of imaging modalities has opened new perspectives for the evaluation of the bone microstructure using QUS. In the nanostructure level, a deterministic hybrid model for bone healing and angiogenesis predictions under the presence of QUS has been established incorporating the spatiotemporal development of soft tissues, bone and the evolution of blood vessel network. The results reveal the promising monitoring potential of QUS and its positive impact on the acceleration of the bone healing process.
References
Abendschein, W.F., Hyatt, G.W. (1972) Ultrasonics and physical properties of healing bone. J Trauma, 12(4): 297-301
Barbieri, G., Barbieri, C.H., Mazzer, N., Pelá, C.A. (2010) Ultrasound propagation velocity and broadband attenuation can help evaluate the healing process of an experimental fracture. Journal of Orthopaedic Research, 29(3): 444-451
Ben-Amoz, M. (1976) A dynamic theory for composite materials. Zeitschrift für angewandte Mathematik und Physik ZAMP, 27(1): 83-99
Bossy, E., Talmant, M., Laugier, P. (2002) Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: A 2D simulation study. J Acoust Soc Am, 112(1): 297-307
Bourgnon, A., Sitzer, A., Chabraborty, A., Rohde, K., Varga, P., Wendlandt, R., Raum, K. (2014) Impact of microscale properties measured by 50-MHz acoustic microscopy on mesoscale elastic and ultimate mechanical cortical bone properties. in: 2014 IEEE International Ultrasonics Symposium, 636-638
Casciaro, S., i dr. (2015) New perspectives in echographic diagnosis of osteoporosis on hip and spine. Clinical Cases in Mineral and Bone Metabolism, 12(2), 142-150
Cheung, W., Chow, S.K., Sun, M., Qin, L., Leung, K. (2011) Low-Intensity Pulsed Ultrasound Accelerated Callus Formation, Angiogenesis and Callus Remodeling in Osteoporotic Fracture Healing. Ultrasound in Medicine & Biology, 37(2): 231-238
Claes, L., Heigele, C. (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. Journal of Biomechanics, 32(3): 255-266
Doan, N., Reher, P., Meghji, S., Harris, M. (1999) In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. Journal of Oral and Maxillofacial Surgery, 57(4): 409-419
Dodd, S., Cunningham, J., Miles, A., Gheduzzi, S., Humphrey, V. (2008) Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study. Ultrasound in Medicine & Biology, 34(3): 454
Dodd, S.P., Miles, A.W., Gheduzzi, S., Humphrey, V.F., Cunningham, J.L. (2007) Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture. Computer Methods in Biomechanics and Biomedical Engineering, 10(5): 371-375
Donnelly, E. (2010) Methods for Assessing Bone Quality: A Review. Clinical Orthopaedics and Related Research, 469(8): 2128-2138
Ferreira, M.L., Matusin, D.P., Machado, C.B., Silva, P.C., Mello, N.B., Amaral, A.C., Franco, R.S., Pereira, W.C.de A., Schanaider, A. (2010) Characterization of pseudarthrosis with ultrasound backscattered signals in rats. Acta Cirurgica Brasileira, 25(1): 13-17
Floriani, L.P., Debervoise, N.T., Hyatt, G.W. (1967) Mechanical properties of healing bone by use of ultrasound. Surg. Forum, 468-470; 18
Foiret, J., Minonzio, J., Chappard, C., Talmant, M., Laugier, P. (2014) Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(9): 1478-1488
Georgiadis, H.G., Vardoulakis, I., Velgaki, E.G. (2004) Dispersive Rayleigh-Wave Propagation in Microstructured Solids Characterized by Dipolar Gradient Elasticity. Journal of Elasticity, 74(1): 17-45
Gill, P.J., Kernohan, G., Mawhinney, I.N., Mollan, R.A.B., McIlhagger, R. (1989) Investigation of the mechanical properties of bone using ultrasound. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 1989-1996 (vols 203-210), 203(18): 61-63
Gortsas, T., Grivas, K.N., Polyzos, D., Potsika, V.T., Protopappas, V.C., Fotiadis, D.I., Raum, K. (2015) The effect of cortical bone porosity on ultrasonic backscattering parameters. in: 2015 6th European Symposium on Ultrasonic Characterization of Bone
Granke, M., Grimal, Q., Saïed, A., Nauleau, P., Peyrin, F., Laugier, P. (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone, 49(5): 1020-1026
Grimal, Q., Rohrbach, D., Grondin, J., Barkmann, R., Glüer, Claus-C., Raum, K., Laugier, P. (2014) Modeling of Femoral Neck Cortical Bone for the Numerical Simulation of Ultrasound Propagation. Ultrasound in Medicine & Biology, 40(5): 1015-1026
Hoffmeister, B.K., Wilson, A.R., Gilbert, M.J., Sellers, M.E. (2012) A backscatter difference technique for ultrasonic bone assessment. Journal of the Acoustical Society of America, 132(6): 4069-4076
Karjalainen, J.P., Riekkinen, O., Töyräs, J., Hakulinen, M., Kröger, H., Rikkonen, T., Salovaara, K., Jurvelin, J.S. (2011) Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures. Osteoporosis International, 23(4): 1287-1295
Kaufman, J.J., Luo, G., Siffert, R.S. (2007) A Portable Real-Time Ultrasonic Bone Densitometer. Ultrasound in Medicine & Biology, 33(9): 1445-1452
Kilappa, V., Xu, K., Moilanen, P., Heikkola, E., Ta, D., Timonen, J. (2013) Assessment of the Fundamental Flexural Guided Wave in Cortical Bone by an Ultrasonic Axial-Transmission Array Transducer. Ultrasound in Medicine & Biology, 39(7): 1223-1232
Laugier, P., Haïat, G. (2011) Bone quantitative ultrasound. Dordrecht-Heidelberg-London-New York: Springer Science Business Media
Liu, C., Zhang, R., Li, Y., Xu, F., Ta, D., Wang, W. (2015) An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates. Engineering, 1(3): 336-343
Machado, C.B., Pereira, W.C.de A., Talmant, M., Padilla, F., Laugier, P. (2010) Computational Evaluation of the Compositional Factors in Fracture Healing Affecting Ultrasound Axial Transmission Measurements. Ultrasound in Medicine & Biology, 36(8): 1314-1326
Malizos, K.N., Papachristos, A.A., Protopappas, V.C., i dr. (2006) Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model. Bone, 38(4): 530
Malo, M.K.H., Töyräs, J., Karjalainen, J.P., Isaksson, H., Riekkinen, O., Jurvelin, J.S. (2014) Ultrasound backscatter measurements of intact human proximal femurs—Relationships of ultrasound parameters with tissue structure and mineral density. Bone, 64: 240-245
Marsell, R., Einhorn, T.A. (2011) The biology of fracture healing. Injury, 42(6): 551-555
Maylia, E., Nokes, L.D. (1999) The use of ultrasonic in orthopedics: A review. Technol. Health Care, 7, 1-28
Mézière, F., Muller, M., Bossy, E., Derode, A. (2014) Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot’s and multiple scattering models. Ultrasonics, 54(5): 1146-1154
Moilanen, P., Talmant, M., Nicholson, P.H.F., Cheng, S., Timonen, J., Laugier, P. (2007) Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments. Journal of the Acoustical Society of America, 122(4): 2439-2445
Nicholson, P.H.F., Moilanen, P., Kärkkäinen, T., Timonen, J., Cheng, S. (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas, 23(4): 755-68
Papacharalampopoulos, A., Vavva, M.G., Protopappas, V.C., Fotiadis, D.I., Polyzos, D. (2011) A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin’s Form II gradient elastic theory. Journal of the Acoustical Society of America, 130(2): 1060-1070
Peiffer, V., Gerisch, A., Vandepitte, D., van Oosterwyck, H., Geris, L. (2010) A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomechanics and Modeling in Mechanobiology, 10(3): 383-395
Potsika, V.T., Grivas, K.N., Gortsas, T., Iori, G., Protopappas, V.C., Raum, K., Polyzos, D., Fotiadis, D.I. (2016) Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones. Materials, 9(3): 205
Potsika, V.T., Grivas, K.N., Gortsas, T., Protopappas, V.C., Polyzos, D.K., Fotiadis, D.I. (2016) Boundary element simulation of ultrasonic backscattering during the fracture healing process. in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Potsika, V.T., Grivas, K.N., Protopappas, V.C., Vavva, M.G., Raum, K., Rohrbach, D., Polyzos, D., Fotiadis, D.I. (2014) Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones. Ultrasonics, 54(5): 1219-1230
Potsika, V.T., Fotiadis, D.I., Gortsas, T., Iori, G., Raum, K. (2015) High-frequency cortical backscatter reveals cortical microstructure - A simulation study. in: 2015 6th European Symposium on Ultrasonic Characterization of Bone
Preininger, B., Checa, S., Molnar, F.L., Fratzl, P., Duda, G.N., Raum, K. (2011) Spatial-Temporal Mapping of Bone Structural and Elastic Properties in a Sheep Model Following Osteotomy. Ultrasound in Medicine & Biology, 37(3): 474-483
Protopappas, V.C., Baga, D.A., Fotiadis, D.I., Likas, A.C., Papachristos, A.A., Malizos, K.N. (2005) An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones. IEEE Trans Biomed Eng, 52(9): 1597-608
 

About

article language: English
document type: unclassified
DOI: 10.5937/jsscm1601168P
published in SCIndeks: 25/03/2017