Akcije

Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 7  
Back povratak na rezultate
Some generalizations of the total irregularity of graphs
(naslov ne postoji na srpskom)
aObuda University, Budapest, Hungary
bUniversity of Management and Technology, Sialkot, Pakistan
Ključne reči: Irregularity measure; total irregularity; nonregular graph
Sažetak
(ne postoji na srpskom)
A novel concept is outlined by which the total irregularity irrt(G), introduced recently by Abdo and Dimitrov, can be extended. It is demonstrated on examples that starting with this concept several generalized versions of the total irregularity can be established.
Reference
Abdo, H., Dimitrov, D. (2012) The total irregularity of a graph. Physics Today, arXiv preprint arXiv:1207.5267, arxiv.org
Abdo, H., Brandt, S., Dimitrov, D. (2014) The total irregularity of a graph. Discrete Math. Theor. Comput. Sci, 16: 201-206
Abdo, H., Cohen, N., Dimitrov, D. (2014) Graphs with maximal irregularity. Filomat, 28(7): 1315-1322
Abdo, H., Dimitrov, D. (2015) The Total Irregularity of Some Composite Graphs. International Journal of Computer Applications, 122(21): 1-9
Abdo, H., Dimitrov, D., Gutman, I. (2018) Graphs with maximal σ irregularity. Discrete Applied Mathematics, 250: 57-64
Albertson, M.O. (1997) The irregularity of a graph. Ars Comb, 46: 2019-225
Bell, F.K. (1992) A note on the irregularity of graphs. Linear Algebra and its Applications, 161: 45-54
Biggs, N. (1974) Algebraic Graph Theory. Cambridge: Cambridge University Press
Collatz, L., Sinogowitz, U. (1957) Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg, 21: 63-77
Dimitrov, D., Reti, T. (2014) Graphs with Equal Irregularity Indices. Acta Polytechnica Hungarica, 11(4): 41-57
Eliasi, M. (2015) The maximal total irregularity of some connected graphs. Iranian J. Math. Chem, 6: 121-128
Elphick, C., Wocjan, P. (2014) New measures of graph irregularity. Electronic Journal of Graph Theory and Applications, 2(1): 52-65
Godsil, C., Royle, G. (2001) Algebraic Graph Theory. New York: Springer Verlag
Goldberg, F. (2014) Spectral radius minus average degree: A better bound. math arxiv1407.4285
Gutman, I. (2013) Degree-Based Topological Indices. Croatica Chemica Acta, 86(4): 351-361
Gutman, I., Urtula, B., Vukicevic, Ž., Popivoda, G. (2015) On Zagreb Indices and Coindices. MATCH Commun. Math. Comput. Chem, 74: 5-16
Gutman, I., das Kinkar, Ch. (2004) The first Zagreb index 30 years after. Communications in mathematical and in computer chemistry / MATCH, br. 50, str. 83-92
Gutman, I. (2016) Irregularity of molecular graphs. Kragujevac Journal of Science, br. 38, str. 71-81
Gutman, I., Hansen, P., Mélot, H. (2005) Variable neighborhood search for extremal graphs: 10. Comparison of irregularity indices for chemical trees. Journal of Chemical Information and Modeling, 45(2): 222-230
Hamzeh, A., Reti, T. (2014) An analogue of Zagreb index inequality obtained from graph irregularity measures. MATCH Commun. Math. Comput. Chem, 72: 669-683
Ilić, A., Stevanović, D., Feng, L., Yu, G., Dankelmann, P. (2011) Degree distance of unicyclic andbicyclic graphs. Discrete Appl. Math, 159: 779-788
Kanwal, S., Tomescu, I. (2015) Bounds for the degree distance of a graph. Math. Reports, 17: 337-344
Milovanović, Ž., Milovanović, E.I., Irić, V.Ć., Jovanović, N. (2016) On some irregularity measures of graphs. Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics, vol. 8, br. 1, str. 21-34
Nikolić, S., Kovačević, G., Miličević, A., Trinajstić, N. (2003) The Zagreb indices 30 years after. Croat. Chem. Acta, 76: 113-124
Reti, T. (2019) On some properties of graph irregularity indices with a particular regard to the σ-index. Appl. Math. Comput, 107-115
Reti, T., Sharafdini, R., Dregelyi-Kiss, A., Haghbin, H. (2018) Graph irregularity indices used as molecular descriptor in QSPR studies. MATCH Commun. Math. Comput. Chem, 79: 509-524
Reti, T., Dregelyi-Kiss, A. (2019) On the generalization of harmonic graphs. Discrete Math. Lett, 1: 16-20
Réti, T., Tóth-Laufer, E. (2017) On the construction and comparison of graph irregularity indices. Kragujevac Journal of Science, br. 39, str. 53-75
Todeschini, R., Consonni, V. (2009) Handbook of Molecular Descriptors. Weinheim: Wiley-VCH, 2nd ed
Vukičević, D., Gutman, I., Furtula, B., Andova, V., Dimitrov, D. (2011) Some observations on comparing Zagreb indices. Communications in Mathematical and in Computer Chemistry / MATCH, vol. 66, br. 2, str. 627-645
Vukičević, D., Furtula, B. (2009) Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem, 46: 1369-1376
Yu, A., Lu, M., Tian, F. (2004) On the spectral radius of graphs. Linear Algebra and its Applications, 387: 41-49
Zhou, B. (2004) Zagreb indices. Communications in Mathematical and in Computer Chemistry / MATCH, br. 52, str. 113-118
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/SPSUNP1901001R
objavljen u SCIndeksu: 16.07.2019.

Povezani članci

Kragujevac J Science (2017)
On the construction and comparison of graph irregularity indices
Réti Tamás, i dr.

Sci Pub Univ Novi Pazar Ser A (2015)
Irregularity measures of graph
Milovanović E., i dr.

Sci Pub Univ Novi Pazar Ser A (2016)
On some irregularity measures of graphs
Milovanović Ž., i dr.

prikaži sve [25]